This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193446 #21 Feb 16 2025 08:33:15 %S A193446 2,18,142,1160,10208,97720,1018008,11507472,140581872,1848236544, %T A193446 26041957632,391738883328,6268657962240,106361504663040, %U A193446 1907768564282880,36075270482058240,717379367864693760,14967427450111488000,326956068509511168000,7463341244426167296000 %N A193446 a(n) = n! * Sum_{k=1..n-1} H(k)*H(n-k) for n>=2, where H(n) is the n-th harmonic number. %C A193446 A self-convolution of the harmonic numbers. %H A193446 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HarmonicNumber.html">Harmonic Number</a>. %F A193446 E.g.f.: log(1 - x)^2 / (1 - x)^2. %F A193446 a(n) = n! * Sum_{k=1..n-1} (Sum_{i=1..k} 1/i)*(Sum_{j=1..n-k} 1/j) for n>=2. %e A193446 E.g.f.: log(1-x)^2/(1-x)^2 = 2*x^2/2! + 18*x^3/3! + 142*x^4/4! + 1160*x^5/5! + ... %e A193446 Illustration of initial terms: %e A193446 a(2) = 2!*(1*1) = 2; %e A193446 a(3) = 3!*(1*(1+1/2) + (1+1/2)*1) = 18; %e A193446 a(4) = 4!*(1*(1+1/2+1/3) + (1+1/2)*(1+1/2) + (1+1/2+1/3)*1) = 142; %e A193446 a(5) = 5!*(1*(1+1/2+1/3+1/4) + (1+1/2)*(1+1/2+1/3) + (1+1/2+1/3)*(1+1/2) + (1+1/2+1/3+1/4)*1) = 1160; ... %t A193446 a[n_] := n! * Sum[HarmonicNumber[k] * HarmonicNumber[n-k], {k, 1, n-1}]; Array[a, 20, 2] (* _Amiram Eldar_, Aug 18 2023 *) %o A193446 (PARI) {a(n)=if(n<2,0,n!*sum(k=1,n,sum(i=1,k,1/i)*sum(j=1,n-k,1/j)))} %o A193446 (PARI) {a(n)=if(n<0,0,n!*polcoeff(log(1-x+x*O(x^n))^2/(1-x+x*O(x^n))^2,n))} %Y A193446 Cf. A001008, A002805, A001706, A193445. %K A193446 nonn %O A193446 2,1 %A A193446 _Paul D. Hanna_, Jul 26 2011 %E A193446 a(21) from _Amiram Eldar_, Aug 18 2023