This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193453 #15 Dec 04 2017 18:36:14 %S A193453 1,1,1,1,1,1,2,1,2,1,2,1,2,2,1,1,1,2,3,1,2,2,2,1,2,2,3,2,2,1,4,1,2,1, %T A193453 2,2,3,3,2,1,2,2,4,2,2,2,2,1,4,2,1,2,2,3,2,2,3,2,2,1,4,4,3,1,2,2,4,1, %U A193453 2,2,4,2,3,3,2,3,4,2,4,1,4,2,2,2,1,4,2,2,2,2,3,2,4,2,3,1,2,4,4,2,3,1,4,2,2 %N A193453 Number of odd divisors of phi(n). %C A193453 phi(n) : A000010 is the Euler totient function. This sequence equals A193169 (n) for n < 63. %H A193453 Antti Karttunen, <a href="/A193453/b193453.txt">Table of n, a(n) for n = 1..16384</a> %F A193453 a(n) = A001227(A000010(n)) = A000005(A053575(n)). - _Antti Karttunen_, Dec 04 2017 %e A193453 a(63) = 3 because phi(63) = 36 with 3 odd divisors {1, 3, 9}. %t A193453 f[n_] := Block[{d = Divisors[EulerPhi[n]]}, Count[OddQ[d], True]]; Table[f[n], {n, 80}] %o A193453 (PARI) A193453(n) = sumdiv(eulerphi(n), d, d%2); \\ _Antti Karttunen_, Dec 04 2017 %Y A193453 Cf. A000010, A001227, A053575. %K A193453 nonn %O A193453 1,7 %A A193453 _Michel Lagneau_, Jul 26 2011 %E A193453 More terms from _Antti Karttunen_, Dec 04 2017