A193455 Paradigm shift sequence with procedure length p=3.
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 25, 30, 36, 42, 49, 64, 80, 100, 125, 150, 180, 216, 256, 320, 400, 500, 625, 750, 900, 1080, 1296, 1600, 2000, 2500, 3125, 3750, 4500, 5400, 6480, 8000, 10000, 12500, 15625, 18750, 22500, 27000, 32400, 40000, 50000
Offset: 1
Examples
For n=20, C = floor(26/8) = 3, R = (23 mod 3) = 2, m = floor (23-9/3) = floor(14/3)=4; therefore a(20) = 4^(3-2)*5^(2) = 4*5^2 = 100. For n=25, the same general formula is used, but C=4 (instead of 3). R=28 mod 4 =0, m = floor(28-12/4)=4; therefore a(25) = 4^4 = 256. For n=35, C = floor(41/8)=5, R = 1, b = max(0,2)=2, d=max(0,-2)=0; therefore a(35) = 4^2*5^(5-2)*6^0 = 2000.
Links
- Jonathan T. Rowell, Solution Sequences for the Keyboard Problem and its Generalizations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.10.7.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,5).
Crossrefs
Programs
-
Python
def a(n): c=(n + 6)//8 if n<25: if n<10: return n r=(n + 3)%c m=(n + 3 - 3*c)//c return m**(c - r)*(m + 1)**r elif n==25: return 256 else: r=(n + 6)%8 b=max(0, 3 - r) d=max(0, r - 3) return 4**b*5**(c - (b + d))*6**d print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 27 2017
Formula
a(n) =
a(25) = 256 [C = 4 below]
a(1:24) = m^(C-R) * (m+1)^R
where C = floor((n+6)/8) [min C=1],
R = n+3 mod C, m = floor((n+3-3*C)/C)
a(n>=26) = 4^b * 5^(C-(b+d)) * 6^d
where C = floor((n+6)/8), R = n+6 mod 8,
b = max(0,3-R), and d = max(0, R-3)
Recursive: a(n) = 5*a(n-8) for all n >= 34
Comments