cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A193471 Square array A(n,k) (n>=1, k>=0) read by antidiagonals: A(n,0) = 0 and A(n,k) is the least integer > A(n,k-1) that can be expressed as a sum of the first prime numbers divided by n.

Original entry on oeis.org

0, 0, 2, 0, 1, 5, 0, 43, 5, 10, 0, 7, 127, 14, 17, 0, 1, 25, 167, 29, 28, 0, 1145, 2, 40, 213, 50, 41, 0, 4, 3758, 20, 82, 321, 80, 58, 0, 20, 11, 3932, 32, 110, 387, 119, 77, 0, 71, 41, 34, 4300, 88, 142, 457, 164, 100, 0, 1, 107, 55, 113, 4490, 212, 178, 531, 220, 129, 0, 7, 10
Offset: 1

Views

Author

Peter Luschny, Jul 29 2011

Keywords

Examples

			n\k  0   1   2    3    4     5     6    7
-----------------------------------------
1 |  0    2    5   10   17   28   41   58  A007504
2 |  0    1    5   14   29   50   80  119
3 |  0   43  127  167  213  321  387  457  A112270
4 |  0    7   25   40   82  110  142  178
5 |  0    1    2   20   32   88  212  296  A112271
6 |  0 1145 3758 3932 4300 4490 4684 5084
7 |  0    4   11   34  113  284  441  634  A112272
8 |  0   20   41   55   71   89  158  185
		

Crossrefs

Cf. A193470.

Programs

  • Maple
    A193471_rect := proc(n,k) local j, i, L; L := NULL; j := 0;
    while nops([L]) < k do add(ithprime(i)/n, i=1..j);
    if type(%,integer) then L := L,% fi; j := j+1 od; L end:
    seq(print(A193471_rect(n, 8)), n = 1..8);
  • Mathematica
    max = 12; rect[n_, k_] := Module[{j, i, L, s}, L = {}; j = 0; While[Length[L], 0] = 0; a[n, k_] := rect[n, max][[k+1]]; Table[a[n-k, k], {n, 1, max} , {k, 0, n-1}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
Showing 1-1 of 1 results.