A193471 Square array A(n,k) (n>=1, k>=0) read by antidiagonals: A(n,0) = 0 and A(n,k) is the least integer > A(n,k-1) that can be expressed as a sum of the first prime numbers divided by n.
0, 0, 2, 0, 1, 5, 0, 43, 5, 10, 0, 7, 127, 14, 17, 0, 1, 25, 167, 29, 28, 0, 1145, 2, 40, 213, 50, 41, 0, 4, 3758, 20, 82, 321, 80, 58, 0, 20, 11, 3932, 32, 110, 387, 119, 77, 0, 71, 41, 34, 4300, 88, 142, 457, 164, 100, 0, 1, 107, 55, 113, 4490, 212, 178, 531, 220, 129, 0, 7, 10
Offset: 1
Examples
n\k 0 1 2 3 4 5 6 7 ----------------------------------------- 1 | 0 2 5 10 17 28 41 58 A007504 2 | 0 1 5 14 29 50 80 119 3 | 0 43 127 167 213 321 387 457 A112270 4 | 0 7 25 40 82 110 142 178 5 | 0 1 2 20 32 88 212 296 A112271 6 | 0 1145 3758 3932 4300 4490 4684 5084 7 | 0 4 11 34 113 284 441 634 A112272 8 | 0 20 41 55 71 89 158 185
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1275
Crossrefs
Cf. A193470.
Programs
-
Maple
A193471_rect := proc(n,k) local j, i, L; L := NULL; j := 0; while nops([L]) < k do add(ithprime(i)/n, i=1..j); if type(%,integer) then L := L,% fi; j := j+1 od; L end: seq(print(A193471_rect(n, 8)), n = 1..8);
-
Mathematica
max = 12; rect[n_, k_] := Module[{j, i, L, s}, L = {}; j = 0; While[Length[L]
, 0] = 0; a[n, k_] := rect[n, max][[k+1]]; Table[a[n-k, k], {n, 1, max} , {k, 0, n-1}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)