This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193472 #14 Jun 24 2019 04:26:34 %S A193472 1,1,1,3,1,25,1,427,1,12465,5,555731,691,35135945,7,2990414715,3617, %T A193472 329655706465,43867,45692713833379,174611,1111113564712575,854513, %U A193472 1595024111042171723,236364091,387863354088927172625,8553103,110350957750914345093747,23749461029 %N A193472 Numerator of ez(n-1)*n!/(4^n-2^n) where ez(n) is the n-th coefficient of sec(t)+tan(t) for n>0, a(0) = 1. %H A193472 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostBernoulliNumbers">The lost Bernoulli numbers.</a> %p A193472 gf := (f,n) -> coeff(series(f(x),x,n+1),x,n): %p A193472 BG := n ->`if`(n=0,1,gf(sec+tan,n-1)*n!/(4^n-2^n)): %p A193472 A193472 := n -> numer(BG(n)): seq(A193472(n),n=0..28); %t A193472 ez[n_] := SeriesCoefficient[Sec[t] + Tan[t], {t, 0, n}]; %t A193472 a[0] = 1; a[n_] := Numerator[ez[n-1] n!/(4^n - 2^n)]; %t A193472 Table[a[n], {n, 0, 28}] (* _Jean-François Alcover_, Jun 24 2019 *) %Y A193472 Cf. A000367, A002445, A009843, A193475, A193473. %K A193472 nonn,frac %O A193472 0,4 %A A193472 _Peter Luschny_, Aug 07 2011