cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193476 The denominators of the Bernoulli secant numbers at odd indices.

This page as a plain text file.
%I A193476 #44 Jan 25 2024 04:10:41
%S A193476 2,56,992,16256,261632,4192256,67100672,1073709056,17179738112,
%T A193476 274877382656,628292059136,70368735789056,1125899873288192,
%U A193476 18014398375264256,288230375614840832,4611686016279904256,73786976286248271872,1180591620683051565056
%N A193476 The denominators of the Bernoulli secant numbers at odd indices.
%C A193476 Denominator of the coefficient [x^(2n)] of sec(x)*(2*n+1)!/(4*16^n-2*4^n), that is, a(n) is the denominator of A000364(n)*(2*n+1)/(4*16^n-2*4^n). [Edited by _Altug Alkan_, Apr 22 2018]
%C A193476 Numerators are A160143. [Corrected by _Peter Luschny_, Mar 18 2021]
%C A193476 A193475(n) = 4*16^n-2*4^n is similar, but differs at n = 10, 31, 52, 73, 77, 94, ...
%H A193476 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/TheLostBernoulliNumbers">The lost Bernoulli numbers.</a>
%p A193476 gf := (f,n) -> coeff(series(f(x),x,n+4),x,n):
%p A193476 A193476 := n -> denom(gf(sec,2*n)*(2*n+1)!/(4*16^n - 2*4^n)):
%p A193476 seq(A193476(n), n = 0..17); # _Altug Alkan_, Apr 23 2018
%t A193476 a[n_] := Sum[Sum[Binomial[k, m] (-1)^(n+k)/(2^(m-1)) Sum[Binomial[m, j]*(2j - m)^(2n), {j, 0, m/2}]*(-1)^(k-m), {m, 0, k}], {k, 1, 2n}] (2n+1)/ (4*16^n - 2*4^n) // Denominator; Table[a[n], {n, 0, 17}] (* _Jean-François Alcover_, Jun 26 2019, after _Vladimir Kruchinin_ in A000364 *)
%o A193476 (PARI) a(n) = denominator(subst(bernpol(2*n+1), 'x, 1/4)*2^(2*n+1)/(2^(2*n+1)-1)); \\ _Altug Alkan_, Apr 22 2018 after _Charles R Greathouse IV_ at A000364
%Y A193476 Cf. A000364, A160143, A160144, A193475.
%K A193476 nonn,frac
%O A193476 0,1
%A A193476 _Peter Luschny_, Aug 17 2011