This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193517 #23 Nov 14 2014 10:23:09 %S A193517 1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,3,1,1,1,1,4,5,4,1,1,1,1,5,7, %T A193517 7,5,1,1,1,1,6,9,10,9,6,1,1,1,1,7,11,13,13,11,8,1,1,1,1,8,13,16,17,16, %U A193517 17,11,1,1,1,1,9,15,19,21,21,28,27,15,1,1,1,1,10,17,22,25,26,41,49,41,20,1,1,1 %N A193517 T(n,k) = number of ways to place any number of 5X1 tiles of k distinguishable colors into an nX1 grid. %C A193517 Table starts: %C A193517 ..1..1...1...1...1...1...1....1....1....1....1....1....1....1....1....1....1 %C A193517 ..1..1...1...1...1...1...1....1....1....1....1....1....1....1....1....1....1 %C A193517 ..1..1...1...1...1...1...1....1....1....1....1....1....1....1....1....1....1 %C A193517 ..1..1...1...1...1...1...1....1....1....1....1....1....1....1....1....1....1 %C A193517 ..2..3...4...5...6...7...8....9...10...11...12...13...14...15...16...17...18 %C A193517 ..3..5...7...9..11..13..15...17...19...21...23...25...27...29...31...33...35 %C A193517 ..4..7..10..13..16..19..22...25...28...31...34...37...40...43...46...49...52 %C A193517 ..5..9..13..17..21..25..29...33...37...41...45...49...53...57...61...65...69 %C A193517 ..6.11..16..21..26..31..36...41...46...51...56...61...66...71...76...81...86 %C A193517 ..8.17..28..41..56..73..92..113..136..161..188..217..248..281..316..353..392 %C A193517 .11.27..49..77.111.151.197..249..307..371..441..517..599..687..781..881..987 %C A193517 .15.41..79.129.191.265.351..449..559..681..815..961.1119.1289.1471.1665.1871 %C A193517 .20.59.118.197.296.415.554..713..892.1091.1310.1549.1808.2087.2386.2705.3044 %C A193517 .26.81.166.281.426.601.806.1041.1306.1601.1926.2281.2666.3081.3526.4001.4506 %H A193517 R. H. Hardin, <a href="/A193517/b193517.txt">Table of n, a(n) for n = 1..9999</a> %F A193517 With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. So T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n=0,1,...,z-1. The solution is T(n,k) = sum_r r^(-n-1)/(1 + z k r^(z-1)) where the sum is over the roots of the polynomial k x^z + x - 1. %F A193517 T(n,k) = sum {s=0..[n/5]} (binomial(n-4*s,s)*k^s). %F A193517 For z X 1 tiles, T(n,k,z) = sum{s=0..[n/z]} (binomial(n-(z-1)*s,s)*k^s). - R. H. Hardin, Jul 31 2011 %e A193517 Some solutions for n=11 k=3; colors=1, 2, 3; empty=0 %e A193517 ..0....2....2....0....0....1....0....3....3....0....0....0....0....3....1....0 %e A193517 ..0....2....2....0....1....1....3....3....3....3....2....3....1....3....1....1 %e A193517 ..0....2....2....0....1....1....3....3....3....3....2....3....1....3....1....1 %e A193517 ..3....2....2....0....1....1....3....3....3....3....2....3....1....3....1....1 %e A193517 ..3....2....2....0....1....1....3....3....3....3....2....3....1....3....1....1 %e A193517 ..3....1....0....2....1....0....3....3....0....3....2....3....1....0....0....1 %e A193517 ..3....1....3....2....1....1....2....3....2....0....0....3....0....3....0....2 %e A193517 ..3....1....3....2....1....1....2....3....2....0....0....3....0....3....0....2 %e A193517 ..0....1....3....2....1....1....2....3....2....0....0....3....0....3....0....2 %e A193517 ..0....1....3....2....1....1....2....3....2....0....0....3....0....3....0....2 %e A193517 ..0....0....3....0....1....1....2....0....2....0....0....3....0....3....0....2 %p A193517 T:= proc(n, k) option remember; %p A193517 `if`(n<0, 0, %p A193517 `if`(n<5 or k=0, 1, k*T(n-5, k) +T(n-1, k))) %p A193517 end: %p A193517 seq(seq(T(n, d+1-n), n=1..d), d=1..13); # _Alois P. Heinz_, Jul 29 2011 %t A193517 T[n_, k_] := T[n, k] = If[n<0, 0, If[n < 5 || k == 0, 1, k*T[n-5, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 14}] // Flatten (* _Jean-François Alcover_, Mar 04 2014, after _Alois P. Heinz_ *) %Y A193517 Column 1 is A003520, %Y A193517 Column 2 is A143447(n-4), %Y A193517 Column 3 is A143455(n-4), %Y A193517 Row 10 is A028884. %K A193517 nonn,tabl %O A193517 1,15 %A A193517 _R. H. Hardin_, with proof and formula from _Robert Israel_ in the Sequence Fans Mailing List, Jul 29 2011