This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193536 #21 Dec 29 2018 21:08:11 %S A193536 1,1,2,1,5,5,4,2,14,21,30,38,40,32,16,42,84,168,322,578,952,1408,1808, %T A193536 1920,1536,768,132,330,840,2112,5168,12172,27352,58126,115636,212762, %U A193536 356352,532224,687104,732160,585728,292864,429,1287,3960 %N A193536 Triangle T(n,k), n>=0, 0<=k<=C(n,2), read by rows: T(n,k) = number of k-length saturated chains in the poset of Dyck paths of semilength n ordered by inclusion. %H A193536 Alois P. Heinz, <a href="/A193536/b193536.txt">Rows n = 0..13, flattened</a> %H A193536 J. Woodcock, <a href="http://garsia.math.yorku.ca/~zabrocki/papers/DPfinal.pdf">Properties of the poset of Dyck paths ordered by inclusion</a> %e A193536 Poset of Dyck paths of semilength n=3: %e A193536 . %e A193536 . A A:/\ B: %e A193536 . | / \ /\/\ %e A193536 . B / \ / \ %e A193536 . / \ %e A193536 . C D C: D: E: %e A193536 . \ / /\ /\ %e A193536 . E /\/ \ / \/\ /\/\/\ %e A193536 . %e A193536 Saturated chains of length k=0: A, B, C, D, E (5); k=1: A-B, B-C, B-D, C-E, D-E (5); k=2: A-B-C, A-B-D, B-C-E, B-D-E (4), k=3: A-B-C-E, A-B-D-E (2) => [5,5,4,2]. %e A193536 Triangle begins: %e A193536 1; %e A193536 1; %e A193536 2, 1; %e A193536 5, 5, 4, 2; %e A193536 14, 21, 30, 38, 40, 32, 16; %e A193536 42, 84, 168, 322, 578, 952, 1408, 1808, 1920, 1536, 768; %e A193536 132, 330, 840, 2112, 5168, 12172, 27352, 58126, 115636, 212762, 356352, ... %p A193536 d:= proc(x, y, l) option remember; %p A193536 `if`(x<=1, [[y, l[]]], [seq(d(x-1, i, [y, l[]])[], i=x-1..y)]) %p A193536 end: %p A193536 T:= proc(n) option remember; local g, r, j; %p A193536 g:= proc(l) option remember; local r, i; %p A193536 r:= [1]; %p A193536 for i to n-1 do if l[i]>i and (i=1 or l[i-1]<l[i]) then %p A193536 r:= zip((x, y)->x+y, r, [0, g(subsop(i=l[i]-1, l))[]], 0) %p A193536 fi od; r %p A193536 end; %p A193536 r:= []; %p A193536 for j in d(n, n, []) do %p A193536 r:= zip((x, y)->x+y, r, g(j), 0) %p A193536 od; r[] %p A193536 end: %p A193536 seq(T(n), n=0..7); %t A193536 zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; d[x_, y_, l_] := d[x, y, l] = If[x <= 1, {Prepend[l, y]}, Flatten[t = Table [d[x-1, i, Prepend[l, y]], {i, x-1, y}], 1]]; %t A193536 T[n_] := T[n] = Module[{g, r0}, g[l_] := g[l] = Module[{r, i}, r = {1}; For[i = 1, i <= n-1 , i++, If [l[[i]]>i && (i == 1 || l[[i-1]] < l[[i]]), r = zip[r, Join[{0}, g[ReplacePart[l, i -> l[[i]]-1]]]]]]; r]; r0 = {}; Do[r0 = zip[r0, g[j]], {j, d[n, n, {}]}]; r0]; Table[T[n], {n, 0, 7}] // Flatten (* _Jean-François Alcover_, Feb 13 2017, translated from Maple *) %Y A193536 Row sums give: A166860. Columns k=0,1 give: A000108, A002054(n-1). Last elements of rows give: A005118. Row lengths give: A000124(n-1). %K A193536 nonn,tabf %O A193536 0,3 %A A193536 _Alois P. Heinz_, Jul 29 2011