This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193560 #5 Mar 30 2012 18:57:38 %S A193560 1,1,1,1,3,3,1,6,14,14,1,10,41,86,86,1,15,95,327,645,645,1,21,190,965, %T A193560 2991,5662,5662,1,28,343,2410,10684,30827,56632,56632,1,36,574,5334, %U A193560 31969,128959,352936,633545,633545,1,45,906,10766,83860,449435 %N A193560 Augmentation of the Catalan triangle, A009766. See Comments. %C A193560 For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091. %C A193560 Regarding A193560, if the triangle is written as (w(n,k)), then w(n,n)=A127715(n). %e A193560 First 5 rows of A193560: %e A193560 1 %e A193560 1...1 %e A193560 1...3...3 %e A193560 1...6...14...14 %e A193560 1...10..41...86...86 %t A193560 p[n_, k_] := ((n - k + 1)/(n + 1)) (n + k)!/(n!*k!) (* Catalan triangle, A009766 *) %t A193560 Table[p[n, k], {n, 0, 5}, {k, 0, n}] %t A193560 m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}] %t A193560 TableForm[m[4]] %t A193560 w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1]; %t A193560 v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]}; %t A193560 v[n_] := v[n - 1].m[n] %t A193560 TableForm[Table[v[n], {n, 0, 6}]] (* A193560 *) %t A193560 Flatten[Table[v[n], {n, 0, 10}]] %Y A193560 Cf. A193091. %K A193560 nonn,tabl %O A193560 0,5 %A A193560 _Clark Kimberling_, Jul 30 2011