This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193561 #5 Mar 30 2012 18:57:38 %S A193561 1,2,1,6,6,3,24,36,30,15,120,240,270,210,105,720,1800,2520,2520,1890, %T A193561 945,5040,15120,25200,30240,28350,20790,10395,40320,141120,272160, %U A193561 378000,415800,374220,270270,135135,362880,1451520,3175200,4989600 %N A193561 Augmentation of the triangle A004736. See Comments. %C A193561 For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091. %C A193561 Regarding A193561, if the triangle is written as (w(n,k)), then %C A193561 w(n,n)=A001147(n), "double factorial numbers"; %C A193561 w(n,n-1)=A097801(n), (2n)!/(n!*2^(n-1)) %C A193561 col 1: A000142, n! %C A193561 col 2: A001286, Lah numbers, (n-1)*n!/2 %e A193561 First 5 rows of A193560: %e A193561 1 %e A193561 2.....1 %e A193561 6.....6....3 %e A193561 24....36...30...15 %e A193561 120...240..270..210..105 %t A193561 p[n_, k_] := n + 1 - k %t A193561 Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A004736 *) %t A193561 m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}] %t A193561 TableForm[m[4]] %t A193561 w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1]; %t A193561 v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]}; %t A193561 v[n_] := v[n - 1].m[n] %t A193561 TableForm[Table[v[n], {n, 0, 6}]] (* A193561 *) %t A193561 Flatten[Table[v[n], {n, 0, 8}]] %Y A193561 Cf. A193091. %K A193561 nonn,tabl %O A193561 0,2 %A A193561 _Clark Kimberling_, Jul 30 2011