This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193589 #6 Mar 30 2012 18:57:38 %S A193589 1,1,2,1,4,7,1,6,18,31,1,8,33,90,154,1,10,52,185,481,820,1,12,75,324, %T A193589 1065,2690,4575,1,14,102,515,2006,6276,15547,26398,1,16,133,766,3420, %U A193589 12468,37711,92124,156233,1,18,168,1085,5439,22412,78030,230277 %N A193589 Augmentation of the Fibonacci triangle A193588. See Comments. %C A193589 For an introduction to the unary operation augmentation as applied to triangular arrays or sequences of polynomials, see A193091. %C A193589 Regarding A193589, if the triangle is written as (w(n,k)), then w(n,n)=A007863(n); w(n,n-1)=A011270; and %C A193589 (col 3)=A033537. %e A193589 First 5 rows of A193588: %e A193589 1 %e A193589 1....2 %e A193589 1....2....3 %e A193589 1....2....3....5 %e A193589 1....2....3....5....8 %e A193589 First 5 rows of A193589: %e A193589 1 %e A193589 1....2 %e A193589 1....4....7 %e A193589 1....6....18...31 %e A193589 1....8....33...90...154 %t A193589 p[n_, k_] := Fibonacci[k + 2] %t A193589 Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A193588 *) %t A193589 m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}] %t A193589 TableForm[m[4]] %t A193589 w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1]; %t A193589 v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]}; %t A193589 v[n_] := v[n - 1].m[n] %t A193589 TableForm[Table[v[n], {n, 0, 6}]] (* A193589 *) %t A193589 Flatten[Table[v[n], {n, 0, 8}]] %Y A193589 Cf. A193091, A193588. %K A193589 nonn,tabl %O A193589 0,3 %A A193589 _Clark Kimberling_, Jul 31 2011