A193590 Augmentation of the Euler triangle A008292. See Comments.
1, 1, 1, 1, 5, 2, 1, 16, 33, 8, 1, 42, 275, 342, 58, 1, 99, 1669, 6441, 5600, 718, 1, 219, 8503, 82149, 217694, 143126, 14528, 1, 466, 39076, 843268, 5466197, 10792622, 5628738, 466220, 1, 968, 168786, 7621160, 107506633, 509354984, 788338180
Offset: 0
Examples
First 5 rows of A193589: 1 1....1 1....5....2 1....16...33....8 1....42...275...342....58
Programs
-
Mathematica
p[n_, k_] := Sum[((-1)^j)*((k + 1 - j)^(n + 1))*Binomial[n + 2, j], {j, 0, k + 1}] (* A008292, Euler triangle *) Table[p[n, k], {n, 0, 5}, {k, 0, n}] m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}] TableForm[m[4]] w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1]; v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]}; v[n_] := v[n - 1].m[n] TableForm[Table[v[n], {n, 0, 6}]] (* A193590 *) Flatten[Table[v[n], {n, 0, 8}]]
Comments