This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193591 #10 Oct 22 2024 05:38:39 %S A193591 1,1,2,1,4,7,1,7,19,31,1,10,45,103,161,1,14,82,297,617,937,1,18,146, %T A193591 652,2057,4005,5953,1,23,228,1395,5251,15004,27836,40668,1,28,355, %U A193591 2555,13023,43470,115110,205516,295922,1,34,509,4689,27327,122006,371942 %N A193591 Augmentation of the Euler partition triangle A026820. See Comments. %C A193591 For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091. %e A193591 First 5 rows: %e A193591 1 %e A193591 1...2 %e A193591 1...4...7 %e A193591 1...7...19...31 %e A193591 1...10..45...103...161 %t A193591 p[n_, k_] := Length@IntegerPartitions[n + 1, %t A193591 k + 1] (* A026820, Euler partition triangle *) %t A193591 Table[p[n, k], {n, 0, 5}, {k, 0, n}] %t A193591 m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}] %t A193591 TableForm[m[4]] %t A193591 w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1]; %t A193591 v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]}; %t A193591 v[n_] := v[n - 1].m[n] %t A193591 TableForm[Table[v[n], {n, 0, 12}]] (* A193591 *) %t A193591 Flatten[Table[v[n], {n, 0, 9}]] %Y A193591 Cf. A014616 (column 1), A026820, A193091. %K A193591 nonn,tabl %O A193591 0,3 %A A193591 _Clark Kimberling_, Jul 31 2011