This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193593 #8 Dec 05 2022 09:43:08 %S A193593 1,1,1,1,3,2,1,6,10,6,1,10,31,40,23,1,15,75,166,187,105,1,21,155,530, %T A193593 958,993,549,1,28,287,1415,3786,5988,5865,3207,1,36,490,3311,12441, %U A193593 28056,40380,37947,20577,1,45,786,7000,35469,109451,217720,292092 %N A193593 Augmentation of the triangle A193592. See Comments. %C A193593 For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091. %C A193593 Regarding A193592, (column 1)=A014616, (column 2)=A090809, (right edge)=A113227. %H A193593 D. Callan, <a href="https://arxiv.org/abs/1008.2375">A bijection to count (1-23-4)-avoiding permutations</a>, arXiv:1008.2375 (rows reversed) %e A193593 First 5 rows: %e A193593 1 %e A193593 1...1 %e A193593 1...3...2 %e A193593 1...6...10...6 %e A193593 1...10..31...40...23 %e A193593 Rows reversed as in Callan's n-edge increasing ordered trees with outdegree k: %e A193593 1 %e A193593 0 1 %e A193593 0 1 1 %e A193593 0 2 3 1 %e A193593 0 6 10 6 1 %e A193593 0 23 40 31 10 1 %e A193593 0 105 187 166 75 15 1 %e A193593 0 549 993 958 530 155 21 1 %e A193593 0 3207 5865 5988 3786 1415 287 28 1 %e A193593 0 20577 37947 40380 28056 12441 3311 490 36 1 %e A193593 0 143239 265901 292092 217720 109451 35469 7000 786 45 1 %t A193593 p[n_, 0] := 1; p[n_, k_] := n + 1 - k /; k > 0; %t A193593 Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A193592 *) %t A193593 m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}] %t A193593 TableForm[m[4]] %t A193593 w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1]; %t A193593 v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]}; %t A193593 v[n_] := v[n - 1].m[n] %t A193593 TableForm[Table[v[n], {n, 0, 12}]] (* A193593 *) %t A193593 Flatten[Table[v[n], {n, 0, 10}]] %Y A193593 Cf. A193091, A193592, A113227 (row sums and diagonal), A090809 (3rd col). %K A193593 nonn,tabl %O A193593 0,5 %A A193593 _Clark Kimberling_, Jul 31 2011