cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193594 Number of attractors under iteration of sum of cubes of digits in base b.

This page as a plain text file.
%I A193594 #22 Jan 05 2025 19:51:39
%S A193594 1,6,9,6,9,34,11,28,15,46,22,50,49,60,86,86,60,128,22,58,118,93,64,
%T A193594 185,5,109,102,100,122,184,51,94,205,131,173,275,67,216,131,127,34,
%U A193594 360,114,78,215,213,393,479,76,254,634,197,214,496,348,170,437,349,290
%N A193594 Number of attractors under iteration of sum of cubes of digits in base b.
%C A193594 If b>=2 and a >= 2*b^3, then S(a,3,b)<a. For each positive integer a, there is a positive integer m such that S^m(a,3,b)<2*b^3. (Grundman/Teeple, 2001, Lemma 8 and Corollary 9.)
%H A193594 H. G. Grundman, E. A. Teeple, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/39-5/grundman.pdf">Generalized Happy Numbers</a>, Fibonacci Quarterly 39 (2001), nr. 5, p. 462-466.
%e A193594 In the decimal system all integers go to (1); (153); (370); (371); (407) or (55, 250,133); (136, 244); (160, 217, 352); (919, 1459) under the iteration of sum of cubes of digits, hence there are five fixed points, two 2-cycles and two 3-cycles. Therefore a(10) = 5 + 2*2 + 2*3 = 15.
%p A193594 S:=proc(n, p, b) local Q, k, N, z; Q:=[convert(n, base, b)]; for k from 1 do N:=Q[k]; z:=convert(sum(N['i']^p, 'i'=1..nops(N)), base, b); if not member(z, Q) then Q:=[op(Q), z]; else Q:=[op(Q), z]; break; fi; od; return Q; end:
%p A193594 NumberOfAttractors:=proc(b) local A,i,Q; A:=[]: for i from 1 to 2*b^3 do Q:=S(i,3,b); A:=[op(A),Q[nops(Q)]]; od: return(nops({op(A)})); end:
%p A193594 seq(NumberOfAttractors(b),b=2..20);
%Y A193594 Cf. A193586.
%K A193594 nonn,base
%O A193594 2,2
%A A193594 _Martin Renner_, Jul 31 2011