This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193605 #27 Aug 20 2019 02:16:27 %S A193605 1,1,3,1,4,8,1,5,12,20,1,6,17,32,48,1,7,23,49,80,112,1,8,30,72,129, %T A193605 192,256,1,9,38,102,201,321,448,576,1,10,47,140,303,522,769,1024,1280, %U A193605 1,11,57,187,443,825,1291,1793,2304,2816,1,12,68,244,630,1268,2116,3084,4097,5120,6144 %N A193605 Triangle: (row n) = partial sums of partial sums of row n of Pascal's triangle. %C A193605 The n-th row is contains the partial sums of the n-th row of the array interpretation of A052509. - _R. J. Mathar_, Apr 22 2013 %H A193605 Denis Neiter and Amsha Proag, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Proag/proag3.html">Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3. %F A193605 Writing the general term as T(n,k), for 0<=k<=n: %F A193605 T(n,n)=A001792, T(n,n-1)=A001787, T(n,n-2)=A000337, T(n,n-3)=A045618. %F A193605 T(n-1,k-1) + T(n-1,k) = T(n,k). - _David A. Corneth_, Oct 18 2016 %F A193605 G.f.: -(1-x*y)^2/(4*x^3*y^3+(4*x^3-8*x^2)*y^2+(5*x-4*x^2)*y+x-1). - _Vladimir Kruchinin_, Aug 19 2019 %F A193605 T(n,k) = C(n,k)+Sum_{i=1..n} (i+3)*2^(i-2)*C(n-i,k-i), - _Vladimir Kruchinin_, Aug 20 2019 %e A193605 First 5 rows of A193605: %e A193605 1 %e A193605 1....3 %e A193605 1....4....8 %e A193605 1....5....12....20 %e A193605 1....6....17....32....48 %p A193605 A052509 := proc(n,k) %p A193605 if k = 0 then %p A193605 1; %p A193605 else %p A193605 procname(n,k-1)+binomial(n,k) ; %p A193605 end if; %p A193605 end proc: %p A193605 A193605 := proc(n,k) %p A193605 if k = 0 then %p A193605 1; %p A193605 else %p A193605 procname(n,k-1)+A052509(n,k) ; %p A193605 end if; %p A193605 end proc: # _R. J. Mathar_, Apr 22 2013 %p A193605 # Alternative after _Vladimir Kruchinin_: %p A193605 gf := ((x*y-1)/(1-2*x*y))^2/(1-x*y-x): ser := series(gf, x, 12): %p A193605 p := n -> coeff(ser,x,n): row := n -> seq(coeff(p(n),y,k), k=0..n): %p A193605 seq(row(n), n=0..10); # _Peter Luschny_, Aug 19 2019 %t A193605 u[n_, k_] := Sum[Binomial[n, h], {h, 0, k}] %t A193605 p[n_, k_] := Sum[u[n, h], {h, 0, k}] %t A193605 Table[p[n, k], {n, 0, 12}, {k, 0, n}] %t A193605 Flatten[%] (* A193605 as a sequence *) %t A193605 TableForm[Table[p[n, k], {n, 0, 12}, {k, 0, n}]] (* A193605 as a triangle *) %o A193605 (Maxima) %o A193605 T(n,k):=sum(((i+3)*2^(i-2))*binomial(n-i,k-i),i,1,min(n,k))+binomial(n,k); %o A193605 /* _Vladimir Kruchinin_, Aug 20 2019 */ %Y A193605 Cf. A193606. %K A193605 nonn,tabl %O A193605 0,3 %A A193605 _Clark Kimberling_, Jul 31 2011 %E A193605 More terms from _David A. Corneth_, Oct 18 2016