This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193629 #18 May 30 2017 09:57:14 %S A193629 1,1,2,1,5,9,7,2,14,70,176,249,202,88,16,42,552,3573,13609,33260, %T A193629 54430,60517,45248,21824,6144,768,132,4587,72490,653521,3785264, %U A193629 15104787,43358146,91942710,146186256,175196202,157630704,104922224,50152960,16290560,3221504 %N A193629 Triangle T(n,k), n>=0, 0<=k<=C(n,2), read by rows: T(n,k) = number of k-length chains in the poset of Dyck paths of semilength n ordered by inclusion. %H A193629 Alois P. Heinz, <a href="/A193629/b193629.txt">Rows n = 0..11, flattened</a> %H A193629 J. Woodcock, <a href="http://garsia.math.yorku.ca/~zabrocki/papers/DPfinal.pdf">Properties of the poset of Dyck paths ordered by inclusion</a> %e A193629 Poset of Dyck paths of semilength n=3: %e A193629 . %e A193629 . A A:/\ B: %e A193629 . | / \ /\/\ %e A193629 . B / \ / \ %e A193629 . / \ %e A193629 . C D C: D: E: %e A193629 . \ / /\ /\ %e A193629 . E /\/ \ / \/\ /\/\/\ %e A193629 . %e A193629 Chains of length k=0: A, B, C, D, E (5); k=1: A-B, A-C, A-D, A-E, B-C, B-D, B-E, C-E, D-E (9); k=2: A-B-C, A-B-D, A-B-E, A-C-E, A-D-E, B-C-E, B-D-E (7), k=3: A-B-C-E, A-B-D-E (2) => [5, 9, 7, 2]. %e A193629 Triangle begins: %e A193629 : 1; %e A193629 : 1; %e A193629 : 2, 1; %e A193629 : 5, 9, 7, 2; %e A193629 : 14, 70, 176, 249, 202, 88, 16; %e A193629 : 42, 552, 3573, 13609, 33260, 54430, 60517, 45248, ... %e A193629 : 132, 4587, 72490, 653521, 3785264, 15104787, 43358146, 91942710, ... %p A193629 d:= proc(x, y, l) option remember; %p A193629 `if`(x<=1, [[l[], y]], [seq(d(x-1, i, [l[], y])[], i=x-1..y)]) %p A193629 end: %p A193629 le:= proc(l1, l2) local i; %p A193629 for i to nops(l1) do if l1[i]>l2[i] then return false fi od; true %p A193629 end: %p A193629 T:= proc(n) option remember; local h, l, m, g, r; %p A193629 l:= d(n, n, []); m:= nops(l); %p A193629 g:= proc(t) option remember; local r, d; %p A193629 r:= [1]; %p A193629 for d to t-1 do if le(l[d], l[t]) then %p A193629 r:= zip((x, y)->x+y, r, [0, g(d)[]], 0) %p A193629 fi od; r %p A193629 end; %p A193629 r:= []; %p A193629 for h to m do %p A193629 r:= zip((x, y)->x+y, r, g(h), 0) %p A193629 od; r[] %p A193629 end: %p A193629 seq(T(n), n=0..7); %Y A193629 Row sums give: A143672-A057427. Column k=0 gives: A000108. Last elements of rows give: A005118. Row lengths give: A000124(n-1). Cf. A193536. %K A193629 nonn,tabf %O A193629 0,3 %A A193629 _Alois P. Heinz_, Aug 01 2011