cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193637 a(n) = a(n-1)^2 - n^(n+1).

This page as a plain text file.
%I A193637 #20 Feb 16 2025 08:33:15
%S A193637 0,-1,-7,-32,0,-15625,243860689,59468035633789920,
%T A193637 3536447262141707692104062559388672,
%U A193637 12506459237909580203511583184455022770672120296396568887010875139183
%N A193637 a(n) = a(n-1)^2 - n^(n+1).
%C A193637 Example of a recursive sequence which produces a table containing two zeros.
%H A193637 Vincenzo Librandi, <a href="/A193637/b193637.txt">Table of n, a(n) for n = 0..12</a>
%H A193637 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RecursiveSequence.html">Recursive Sequence</a>
%F A193637 a(0) = 0, a(n) = a(n-1)^2 - n^(n+1).
%e A193637 a(2) = -7 because a(1) = -1 and (-1)^2 - 2^(2+1) = -7.
%t A193637 RecurrenceTable[{a[n] == a[n - 1]^2 - n^(n + 1), a[0] == 0}, a, {n, 10}]
%o A193637 (PARI) a=0; for(n=0, 10, print1(a=a^2-n^(n+1), ", "));
%Y A193637 Cf. A003095, A007778.
%K A193637 easy,sign
%O A193637 0,3
%A A193637 _Arkadiusz Wesolowski_, Aug 01 2011