This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193641 #43 Dec 03 2024 11:16:35 %S A193641 1,3,7,15,33,73,161,355,783,1727,3809,8401,18529,40867,90135,198799, %T A193641 438465,967065,2132929,4704323,10375711,22884351,50473025,111321761, %U A193641 245527873,541528771,1194379303,2634286479,5810101729,12814582761 %N A193641 Number of arrays of -1..1 integers x(1..n) with every x(i) in a subsequence of length 1 or 2 with sum zero. %C A193641 Column 1 of A193648. %C A193641 Or yet empirical: row sums of triangle %C A193641 m/k | 0 1 2 3 4 5 6 7 %C A193641 ================================================== %C A193641 0 | 1 %C A193641 1 | 1 2 %C A193641 2 | 1 2 4 %C A193641 3 | 1 2 4 8 %C A193641 4 | 1 4 4 8 16 %C A193641 5 | 1 4 12 8 16 32 %C A193641 6 | 1 4 12 32 16 32 64 %C A193641 7 | 1 6 12 32 80 32 64 128 %C A193641 which is triangle for numbers 2^k*C(m,k) with triplicated diagonals. - _Vladimir Shevelev_, Apr 13 2012 %H A193641 R. H. Hardin, <a href="/A193641/b193641.txt">Table of n, a(n) for n = 1..200</a> %H A193641 Jean-Luc Baril and Nathanaƫl Hassler, <a href="http://jl.baril.u-bourgogne.fr/interva.pdf">Intervals in a family of Fibonacci lattices</a>, Univ. de Bourgogne (France, 2024). See p. 7. %H A193641 Tomislav Doslic and Ivana Zubac, <a href="https://doi.org/10.26493/1855-3974.851.167">Counting maximal matchings in linear polymers</a>, Ars Mathematica Contemporanea 11 (2016) 255-276. %F A193641 Empirical: a(n) = 2*a(n-1) + a(n-3). %F A193641 Empirical: G.f.: -x*(1+x+x^2) / ( -1+2*x+x^3 ); a(n) = A008998(n-3) + A008998(n-2) + A008998(n-1). - _R. J. Mathar_, Feb 19 2015 %F A193641 Empirical: a(n) = 1 + 2*A077852(n-2) for n >= 2. - _Greg Dresden_, Apr 04 2021 %F A193641 Empirical: partial sums of A052910. - _Sean A. Irvine_, Jul 14 2022 %e A193641 Some solutions for n=6: %e A193641 1 1 1 0 0 1 -1 1 0 -1 -1 0 0 0 -1 -1 %e A193641 -1 -1 -1 0 -1 -1 1 -1 1 1 1 1 1 0 1 1 %e A193641 -1 0 1 0 1 1 0 0 -1 -1 0 -1 -1 1 -1 1 %e A193641 1 1 1 0 1 0 -1 -1 1 1 0 0 -1 -1 -1 -1 %e A193641 0 -1 -1 -1 -1 0 1 1 -1 0 0 0 1 1 1 1 %e A193641 0 1 1 1 1 0 -1 0 0 0 0 0 0 -1 -1 -1 %o A193641 (Haskell) %o A193641 a193641 n = a193641_list !! n %o A193641 a193641_list = drop 2 xs where %o A193641 xs = 1 : 1 : 1 : zipWith (+) xs (map (* 2) $ drop 2 xs) %o A193641 -- _Reinhard Zumkeller_, Jan 01 2014 %K A193641 nonn %O A193641 1,2 %A A193641 _R. H. Hardin_, Aug 02 2011