A193651 a(n) = ((2*n + 1)!! + 1)/2.
1, 2, 8, 53, 473, 5198, 67568, 1013513, 17229713, 327364538, 6874655288, 158117071613, 3952926790313, 106729023338438, 3095141676814688, 95949391981255313, 3166329935381425313, 110821547738349885938, 4100397266318945779688, 159915493386438885407813
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..403
Programs
-
Maple
seq((1+doublefactorial(2*n+1))/2,n=0..18); # Peter Luschny, Aug 20 2014
-
Mathematica
q[n_, k_] := 1; r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}] u[0, x_] := 1; u[n_, x_] := (x + n)*u[n - 1, x] p[n_, k_] := Coefficient[u[n, x], x, k] v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}] Table[v[n], {n, 0, 18}] (* A193651 *) TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]] Table[r[k], {k, 0, 8}] (* 2^k *) TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]] (* A130534 *) Table[((2 n + 1)!! + 1)/2, {n, 0, 18}] (* or *) Table[(2^n Gamma[n + 3/2])/Sqrt[Pi] + 1/2, {n, 0, 18}] (* or *) Table[2^n Pochhammer[1/2, n + 1] + 1/2, {n, 0, 18}] (* Michael De Vlieger, Apr 25 2016 *)
-
Sage
def A(): n, a, b = 1, 1, 2 yield a while True: yield b n += 1 a, b = b, ((2*(b-a)*n + a)*n - b)/(n-1) A193651 = A() [next(A193651) for i in range(19)] # Peter Luschny, Aug 20 2014
Formula
From Peter Luschny, Aug 20 2014: (Start)
a(n) = (2^n*Gamma(n+3/2))/sqrt(Pi) + 1/2.
a(n) = 2^n*Pochhammer(1/2, n+1) + 1/2.
a(n) = ((2*a(n-1) - 2*a(n-2))*n^2 + a(n-2)*n - a(n-1))/(n-1) for n>1, a(0)=1, a(1)=2. (End)
(-n+1)*a(n) +(2*n^2-1)*a(n-1) -n*(2*n-1)*a(n-2)=0. - R. J. Mathar, Feb 19 2015
E.g.f.: (exp(x) + 1/(1-2*x)^(3/2))/2. - Vladimir Reshetnikov, Apr 25 2016
Extensions
New name from Peter Luschny, Aug 20 2014
Comments