This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193659 #7 Feb 19 2015 14:20:53 %S A193659 1,2,8,43,265,1832,14160,121771,1157557,12080436,137505288,1696841395, %T A193659 22578385961,322377704664,4917809053032,79840791037379, %U A193659 1374705370985669,25024307510421060,480230285880218992 %N A193659 Q-residue of the triangle A094727, where Q=Pascal's triangle. (See Comments.) %C A193659 For the definition of Q-residue, see A193649. %F A193659 Conjecture: a(n) +(-n-5)*a(n-1) +2*(2*n+1)*a(n-2) +(-5*n+8)*a(n-3) +2*(n-3) %F A193659 *a(n-4)=0. - _R. J. Mathar_, Feb 19 2015 %t A193659 q[n_, k_] := n + k + 1;(* A094727 *) %t A193659 r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}] %t A193659 p[n_, k_] := n!/(k! (n - k)!); (* Pascal's triangle *) %t A193659 v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}] %t A193659 Table[v[n], {n, 0, 18}] (* A193659 *) %t A193659 TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]] %t A193659 Table[r[k], {k, 0, 8}] (* A193668 *) %t A193659 TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, n}]] %Y A193659 Cf. A193668, A094727, A193649. %K A193659 nonn %O A193659 0,2 %A A193659 _Clark Kimberling_, Aug 02 2011