A193665 Q-residue of A075392, where Q=A075392. (See Comments.)
1, 6, 33, 208, 1505, 12330, 112973, 1145568, 12742389, 154308350, 2021296189, 28480485024, 429565218277, 6905903216562, 117891260108985, 2129869055824000, 40600135597843817, 814383095809997142, 17147155400516728601, 378137512431282658800
Offset: 0
Keywords
Programs
-
Mathematica
q[n_, k_] := (k + 1) (n + 1); (* A075362 *) r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}]; p[n_, k_] := (k + 1) (n + 1); (* A075362 *) v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}] Table[v[n], {n, 0, 20}] (* A193665 *) TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]] Table[r[k], {k, 0, 8}] (* A193665 *) TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, n}]]
Formula
Conjecture: a(n) +(-n-4)*a(n-1) +(n+1)*a(n-2) -a(n-3)=0. - R. J. Mathar, Feb 19 2015
Comments