This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193667 #7 Dec 26 2023 09:55:25 %S A193667 1,1,3,1,4,8,1,5,12,21,1,6,17,33,55,1,7,23,50,88,144,1,8,30,73,138, %T A193667 232,377,1,9,38,103,211,370,609,987,1,10,47,141,314,581,979,1596,2584, %U A193667 1,11,57,188,455,895,1560,2575,4180,6765,1,12,68,245,643,1350,2455 %N A193667 Triangular array: the fission of (p(n,x)) by (q(n,x)), where p(n,x)=(x+1)^n and q(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers). %C A193667 See A193842 for the definition of the fission of P by Q, where P and Q are sequences of polynomials or triangular arrays (of coefficients of polynomials). A193667 is the mirror of A125172. %e A193667 First six rows: %e A193667 1 %e A193667 1...3 %e A193667 1...4...8 %e A193667 1...5...12...21 %e A193667 1...6...17...33...55 %e A193667 1...7...23...50...88...144 %t A193667 z = 11; %t A193667 p[n_, x_] := (x + 1)^n; %t A193667 q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}]; %t A193667 p1[n_, k_] := Coefficient[p[n, x], x^k]; %t A193667 p1[n_, 0] := p[n, x] /. x -> 0; %t A193667 d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] %t A193667 h[n_] := CoefficientList[d[n, x], {x}] %t A193667 TableForm[Table[Reverse[h[n]], {n, 0, z}]] %t A193667 Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193667 *) %t A193667 TableForm[Table[h[n], {n, 0, z}]] %t A193667 Flatten[Table[h[n], {n, -1, z}]] (* A125172 *) %Y A193667 Cf. A193842, A125172. %K A193667 nonn,tabl %O A193667 0,3 %A A193667 _Clark Kimberling_, Aug 11 2011