A193681 Discriminant of minimal polynomial of 2*cos(Pi/n) (see A187360).
1, 1, 1, 8, 5, 12, 49, 2048, 81, 2000, 14641, 2304, 371293, 1075648, 1125, 2147483648, 410338673, 1259712, 16983563041, 1024000000, 453789, 2414538435584, 41426511213649, 1358954496, 762939453125, 7340688973975552, 31381059609, 4739148267126784, 10260628712958602189, 324000000
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..500
- Ed Pegg Jr, Table illustrating A193681 (Each box gives n, degree (A055034), and determinant (this sequence).)
Programs
-
Maple
g:= proc(n) local P,z,j; P:= factor(evala(Norm(z-convert(2*cos(Pi/n),RootOf)))); if type(P,`^`) then P:= op(1,P) fi; discrim(P,z) end proc: map(g, [$1..100]); # Robert Israel, Aug 04 2015
-
Mathematica
Table[NumberFieldDiscriminant[Cos[Pi/m]], {m, 1, z}] (* Clark Kimberling, Aug 03 2015 *)
Comments