This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193692 #21 Feb 01 2017 12:28:45 %S A193692 1,1,2,1,5,3,3,2,1,14,9,10,7,4,9,6,7,5,3,4,3,2,1,42,28,32,23,14,32,22, %T A193692 26,19,12,17,13,9,5,28,19,22,16,10,23,16,19,14,9,13,10,7,4,14,10,12,9, %U A193692 6,9,7,5,3,5,4,3,2,1,132,90,104,76,48,107,75,89,66,43,62,48,34,20,104 %N A193692 Triangle T(n,k), n>=0, 1<=k<=C(n), read by rows: T(n,k) = number of elements >= k-th path in the poset of Dyck paths of semilength n ordered by inclusion. %H A193692 Alois P. Heinz, <a href="/A193692/b193692.txt">Rows n = 0..9, flattened</a> %e A193692 Dyck paths of semilength n=3 listed in lexicographic order: %e A193692 . /\ %e A193692 . /\ /\ /\/\ / \ %e A193692 . /\/\/\ /\/ \ / \/\ / \ / \ %e A193692 . 101010 101100 110010 110100 111000 %e A193692 . k = (1) (2) (3) (4) (5) %e A193692 . %e A193692 We have (1),(2),(3),(4),(5) >= (1); (2),(4),(5) >= (2); (3),(4),(5) >= (3); %e A193692 (4),(5) >= (4); and (5) >= (5), thus row 3 = [5, 3, 3, 2, 1]. %e A193692 Triangle begins: %e A193692 1; %e A193692 1; %e A193692 2, 1; %e A193692 5, 3, 3, 2, 1; %e A193692 14, 9, 10, 7, 4, 9, 6, 7, 5, 3, 4, 3, 2, 1; %e A193692 42, 28, 32, 23, 14, 32, 22, 26, 19, 12, 17, 13, 9, 5, 28, 19, 22, 16, ... %p A193692 d:= proc(n, l) local m; m:= nops(l); %p A193692 `if`(n=m, [l], [seq(d(n, [l[], j])[], %p A193692 j=`if`(m=0, 1, max(m+1, l[-1]))..n)]) %p A193692 end: %p A193692 le:= proc(x, y) local i; %p A193692 for i to nops(x) do if x[i]>y[i] then return false fi od; true %p A193692 end: %p A193692 T:= proc(n) option remember; local l; %p A193692 l:= d(n, []); %p A193692 seq(add(`if`(le(l[j], l[i]), 1, 0), i=j..nops(l)), j=1..nops(l)) %p A193692 end: %p A193692 seq(T(n), n=0..6); %t A193692 d[n_, l_] := d[n, l] = Module[{m}, m = Length[l]; If[n == m, {l}, Flatten[#, 1]& @ Table[d[n, Append[l, j]], {j, If[m == 0, 1, Max[m + 1, Last[l]]], n}]]]; le[x_, y_] := Module[{i}, For[i = 1, i <= Length[x], i++, If[x[[i]] > y[[i]] , Return[False]]]; True]; T[n_] := T[n] = Module[{l}, l = d[n, {}]; Table[Sum[If[le[l[[j]], l[[i]]], 1, 0], {i, j, Length[l]}], {j, 1, Length[l]}]]; Table[T[n], {n, 0, 6}] // Flatten (* _Jean-François Alcover_, Feb 01 2017, after _Alois P. Heinz_ *) %Y A193692 Row sums give A005700. %Y A193692 Lengths and first elements of rows give A000108. %Y A193692 Cf. A193691, A193693, A193694. %K A193692 nonn,look,tabf %O A193692 0,3 %A A193692 _Alois P. Heinz_, Aug 02 2011