A193695 Number of arrays of -1..1 integers x(1..n) with every x(i) in a subsequence of length 1, 2 or 3 with sum zero.
1, 3, 9, 23, 57, 141, 351, 875, 2181, 5435, 13543, 33747, 84093, 209549, 522169, 1301177, 3242363, 8079545, 20133171, 50169233, 125015177, 311521495, 776270883, 1934365665, 4820186623, 12011275583, 29930530167, 74582972465, 185851027385
Offset: 1
Keywords
Examples
Some solutions for n=6 .-1....0....1....0....0....0....0....0....1...-1....1....1....0....1...-1....0 ..1...-1...-1....0....0....0...-1....1...-1....1...-1...-1....0...-1....1...-1 ..0....1....1....0....1....0....0...-1....0....1....1....1....1....1...-1....1 ..0....0....1....1....0...-1....1....0....0...-1...-1....0...-1...-1....0...-1 ..1...-1...-1...-1...-1....1....1....0....1....0....1....0....0....0....1....1 .-1....0....0....1....1....0...-1....0...-1....0...-1....0....0....1...-1....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n) = 2*a(n-1) +a(n-2) +a(n-4) +a(n-5).
Empirical: G.f.: x*( -1-x-2*x^2-2*x^3-x^4 ) / ( -1+2*x+x^2+x^4+x^5 ). - R. J. Mathar, Feb 19 2015
Comments