cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A193695 Number of arrays of -1..1 integers x(1..n) with every x(i) in a subsequence of length 1, 2 or 3 with sum zero.

Original entry on oeis.org

1, 3, 9, 23, 57, 141, 351, 875, 2181, 5435, 13543, 33747, 84093, 209549, 522169, 1301177, 3242363, 8079545, 20133171, 50169233, 125015177, 311521495, 776270883, 1934365665, 4820186623, 12011275583, 29930530167, 74582972465, 185851027385
Offset: 1

Views

Author

R. H. Hardin Aug 02 2011

Keywords

Comments

Column 1 of A193702

Examples

			Some solutions for n=6
.-1....0....1....0....0....0....0....0....1...-1....1....1....0....1...-1....0
..1...-1...-1....0....0....0...-1....1...-1....1...-1...-1....0...-1....1...-1
..0....1....1....0....1....0....0...-1....0....1....1....1....1....1...-1....1
..0....0....1....1....0...-1....1....0....0...-1...-1....0...-1...-1....0...-1
..1...-1...-1...-1...-1....1....1....0....1....0....1....0....0....0....1....1
.-1....0....0....1....1....0...-1....0...-1....0...-1....0....0....1...-1....0
		

Formula

Empirical: a(n) = 2*a(n-1) +a(n-2) +a(n-4) +a(n-5).
Empirical: G.f.: x*( -1-x-2*x^2-2*x^3-x^4 ) / ( -1+2*x+x^2+x^4+x^5 ). - R. J. Mathar, Feb 19 2015

A193696 Number of arrays of -2..2 integers x(1..n) with every x(i) in a subsequence of length 1, 2 or 3 with sum zero.

Original entry on oeis.org

1, 5, 23, 83, 299, 1081, 3931, 14293, 51955, 188859, 686519, 2495537, 9071325, 32974351, 119862177, 435700975, 1583780905, 5757072535, 20927062737, 76070247573, 276516705575, 1005143149813, 3653713262601, 13281312856865
Offset: 1

Views

Author

R. H. Hardin Aug 02 2011

Keywords

Comments

Column 2 of A193702

Examples

			Some solutions for n=6
.-1....0....1...-2...-1...-2....2...-1...-1....0....1....0...-1...-1...-2....1
..0...-1....0....0....1....2....0...-1....2....1...-1....1....1...-1....0...-1
..1....1...-1....2...-1...-2...-2....2...-1...-1....0....1....1....2....2....2
..1...-1....0...-1....1....1....1....0...-1...-2....2...-2...-2....1...-1...-2
.-1...-2....1...-1...-2...-1....1....1...-2....1...-1...-1....1....0....1...-1
..1....2....0....2....2....1...-2...-1....2....1...-1....1....0...-1...-1....1
		

Formula

Empirical: a(n) = 3*a(n-1) +2*a(n-2) -2*a(n-3) +5*a(n-4) +16*a(n-5) +18*a(n-6) +20*a(n-7) +23*a(n-8) +18*a(n-9) +7*a(n-10) +a(n-11) +4*a(n-12) +7*a(n-13) +a(n-14) -7*a(n-15) -8*a(n-16) -4*a(n-17) -a(n-18)

A193697 Number of arrays of -3..3 integers x(1..n) with every x(i) in a subsequence of length 1, 2 or 3 with sum zero.

Original entry on oeis.org

1, 7, 43, 181, 827, 3773, 17197, 78407, 357403, 1629369, 7428007, 33862711, 154372795, 703751937, 3208252657, 14625730979, 66675552791, 303959466209, 1385685646663, 6317041957501, 28798031581467, 131284013681727, 598495497977845, 2728411869163663, 12438241145358561
Offset: 1

Views

Author

R. H. Hardin, Aug 02 2011

Keywords

Examples

			Some solutions for n=6:
..3...-2....0....2...-3....1....1...-2....2...-3...-3...-2....0...-3....3....3
.-3....0....0...-1....2...-3....1....2....0....1....0....2....1....0...-3...-3
..2....2....0...-1....1....2...-2....0...-2....2....3....0....2....3....2...-1
..1...-3...-3....1....2...-2....1....1...-1...-2...-2...-1...-3....1...-2....1
..1....1....3...-1...-3....2....1...-3....2....0....0....1....2...-2...-1....2
.-2...-1...-3....0....1....0...-2....2...-1....0....2...-1....1....1....3...-2
		

Crossrefs

Column 3 of A193702.

Formula

Empirical: a(n) = 4*a(n-1) +a(n-2) -a(n-3) +21*a(n-4) +47*a(n-5) +60*a(n-6) +155*a(n-7) +255*a(n-8) +386*a(n-9) +623*a(n-10) +899*a(n-11) +976*a(n-12) +972*a(n-13) +664*a(n-14) +119*a(n-15) -414*a(n-16) -754*a(n-17) -970*a(n-18) -886*a(n-19) -786*a(n-20) -580*a(n-21) -358*a(n-22) -109*a(n-23) +40*a(n-24) +116*a(n-25) +100*a(n-26) +66*a(n-27) +37*a(n-28) +19*a(n-29) +6*a(n-30) +a(n-31).

A193698 Number of arrays of -4..4 integers x(1..n) with every x(i) in a subsequence of length 1, 2 or 3 with sum zero.

Original entry on oeis.org

1, 9, 69, 317, 1741, 9385, 50035, 268453, 1438203, 7705011, 41284941, 221198177, 1185157449, 6349965025, 34022467117, 182289038899, 976686732167, 5232991207579, 28037851489661, 150224045883455, 804885636881145
Offset: 1

Views

Author

R. H. Hardin Aug 02 2011

Keywords

Comments

Column 4 of A193702

Examples

			Some solutions for n=6
..0....3....4...-3...-3...-2....2....2....3....3...-3...-1...-4....2....2...-1
..2...-3...-3....2...-1....2...-2...-2...-4...-3....2...-3....2...-2...-2....1
..0....2...-1....1....4...-3....1....1....1....3....1....4....2...-1....0...-2
.-2...-2...-4...-2...-4....1....1...-1....2...-1....0....0...-4....1....2....1
..1....0....4....2....2...-1....4....0...-3...-3....0....0....1...-4...-2...-3
.-1....0...-4...-2....2....1...-4....0....0....4....0....0...-1....3....0....2
		

Formula

Empirical: a(n) = 6*a(n-1) -6*a(n-2) +3*a(n-3) +33*a(n-4) +97*a(n-5) +56*a(n-6) +410*a(n-7) +879*a(n-8) +1783*a(n-9) +3145*a(n-10) +7753*a(n-11) +10683*a(n-12) +18787*a(n-13) +28728*a(n-14) +40680*a(n-15) +46937*a(n-16) +53760*a(n-17) +15971*a(n-18) -19648*a(n-19) -105105*a(n-20) -160613*a(n-21) -198846*a(n-22) -149920*a(n-23) -86466*a(n-24) +71880*a(n-25) +113537*a(n-26) +220479*a(n-27) +140242*a(n-28) +136646*a(n-29) +17320*a(n-30) -6999*a(n-31) -64171*a(n-32) -52874*a(n-33) -51993*a(n-34) -26792*a(n-35) -14383*a(n-36) -1773*a(n-37) +1763*a(n-38) +3249*a(n-39) +2387*a(n-40) +1554*a(n-41) +741*a(n-42) +312*a(n-43) +109*a(n-44) +35*a(n-45) +8*a(n-46) +a(n-47)

A193699 Number of arrays of -5..5 integers x(1..n) with every x(i) in a subsequence of length 1, 2 or 3 with sum zero.

Original entry on oeis.org

1, 11, 101, 491, 3141, 19301, 115761, 706591, 4292223, 26065517, 158426129, 962553071, 5848496923, 35536745667, 215924096065, 1311980244395, 7971749802937, 48437255764809, 294310402140129, 1788264132674883
Offset: 1

Views

Author

R. H. Hardin Aug 02 2011

Keywords

Comments

Column 5 of A193702

Examples

			Some solutions for n=6
.-4...-3....2...-4....1...-3...-2...-1....4....1....2....4....4....4....0...-5
..4....3...-2....1....4....3....2....1....1...-5...-2...-4....0...-4....2....5
..1....0....4....3...-5...-5....1....0...-5....4...-5...-2...-4....4...-2...-5
.-5....3...-2...-4....3....5....4...-1....5...-1....5....2...-1...-3...-5....4
..2...-5....1....1....2...-5...-5....1....3...-4....0...-4...-2...-2....2...-4
.-2....2...-1....0...-5....0....5....0...-3....5...-5....2....3....5....3....0
		

Formula

Empirical: a(n) = 7*a(n-1) -10*a(n-2) +12*a(n-3) +40*a(n-4) +244*a(n-5) +3*a(n-6) +1089*a(n-7) +3707*a(n-8) +6208*a(n-9) +11413*a(n-10) +54122*a(n-11) +73396*a(n-12) +158607*a(n-13) +405718*a(n-14) +701801*a(n-15) +1089821*a(n-16) +2395265*a(n-17) +3200288*a(n-18) +4951404*a(n-19) +6944714*a(n-20) +8209743*a(n-21) +6954175*a(n-22) +5206414*a(n-23) -8778901*a(n-24) -18668023*a(n-25) -42468364*a(n-26) -49526242*a(n-27) -51648621*a(n-28) -18663384*a(n-29) +10565942*a(n-30) +78511699*a(n-31) +71823492*a(n-32) +108577171*a(n-33) +19543205*a(n-34) +19288879*a(n-35) -71137204*a(n-36) -42763958*a(n-37) -65244582*a(n-38) -16175672*a(n-39) -11174774*a(n-40) +13423392*a(n-41) +10575176*a(n-42) +12859223*a(n-43) +6625040*a(n-44) +4102636*a(n-45) +1041074*a(n-46) +129924*a(n-47) -376260*a(n-48) -325965*a(n-49) -242219*a(n-50) -129056*a(n-51) -62894*a(n-52) -25836*a(n-53) -9900*a(n-54) -3275*a(n-55) -954*a(n-56) -243*a(n-57) -55*a(n-58) -10*a(n-59) -a(n-60)

A193700 Number of arrays of -6..6 integers x(1..n) with every x(i) in a subsequence of length 1, 2 or 3 with sum zero.

Original entry on oeis.org

1, 13, 139, 703, 5127, 35121, 231121, 1571745, 10581553, 71181241, 479947725, 3232545773, 21775125291, 146700533417, 988236372613, 6657360614917, 44848171247367, 302123393506887, 2035285492576987, 13710906191405879
Offset: 1

Views

Author

R. H. Hardin Aug 02 2011

Keywords

Comments

Column 6 of A193702

Examples

			Some solutions for n=6
..0....3....3....2...-1....3....0...-2...-1....0....6...-1...-1...-6...-3...-6
.-5...-4...-1....1....6....1....0...-3...-3....4...-3....4...-5....6....3....4
..1....1...-2...-3...-5...-4....4....5....4...-2...-3...-3....6....1....4....2
..4...-1...-6....2...-2....3...-3...-5...-4...-2....3....1...-5....2...-4...-5
.-5...-4....5...-4....2...-1...-1....6...-4...-5....0...-2....5...-3....6....2
..0....4....1....4....0...-2....1...-1....4....5....0....1...-5....3...-6....3
		

Formula

Empirical: a(n) = 8*a(n-1) -14*a(n-2) +18*a(n-3) +42*a(n-4) +532*a(n-5) -315*a(n-6) +1840*a(n-7) +12473*a(n-8) +13792*a(n-9) +20549*a(n-10) +255743*a(n-11) +304217*a(n-12) +632955*a(n-13) +2991169*a(n-14) +5389718*a(n-15) +8604964*a(n-16) +30250938*a(n-17) +51494261*a(n-18) +90398324*a(n-19) +208342125*a(n-20) +362582604*a(n-21) +540397472*a(n-22) +1034234494*a(n-23) +1405920463*a(n-24) +1935955787*a(n-25) +2396524190*a(n-26) +2332763945*a(n-27) +808988744*a(n-28) -1439143236*a(n-29) -8362720657*a(n-30) -13069971494*a(n-31) -22093152783*a(n-32) -20609065416*a(n-33) -15506723392*a(n-34) +9043039012*a(n-35) +27240818460*a(n-36) +62586614863*a(n-37) +45043587612*a(n-38) +53875925002*a(n-39) -26366651863*a(n-40) -22697494843*a(n-41) -91636141648*a(n-42) -31865904719*a(n-43) -43383211591*a(n-44) +27951296127*a(n-45) +15841549285*a(n-46) +38065522467*a(n-47) +12105171253*a(n-48) +10539636196*a(n-49) -3371313190*a(n-50) -2950259705*a(n-51) -4982694992*a(n-52) -2717534262*a(n-53) -1854432715*a(n-54) -635721381*a(n-55) -217450973*a(n-56) +38465489*a(n-57) +70279472*a(n-58) +65849635*a(n-59) +39286061*a(n-60) +21034749*a(n-61) +9544870*a(n-62) +3991356*a(n-63) +1490866*a(n-64) +508874*a(n-65) +158820*a(n-66) +45029*a(n-67) +11626*a(n-68) +2618*a(n-69) +535*a(n-70) +92*a(n-71) +13*a(n-72) +a(n-73)

A193701 Number of arrays of -7..7 integers x(1..n) with every x(i) in a subsequence of length 1, 2 or 3 with sum zero.

Original entry on oeis.org

1, 15, 183, 953, 7799, 58661, 416291, 3109443, 22837977, 167468295, 1233723835, 9067625183, 66666846231, 490306244985, 3605057176121, 26508858876345, 194928358871853, 1433337703487151, 10539668947354103, 77500564655649379
Offset: 1

Views

Author

R. H. Hardin Aug 02 2011

Keywords

Comments

Column 7 of A193702

Examples

			Some solutions for n=6
..6....0...-6...-5....3....1...-4...-4...-6....5....0....2....2...-6....1....5
.-5...-2....4....0....2...-1...-3....0....6...-5...-2...-2....5....2...-7...-4
.-1....3....2....5...-5...-4....7....4...-7....3....2....3...-7....4....6...-1
.-2...-1...-6...-1...-5....4....0...-1....7...-3...-4...-6....2...-6....7...-2
..3...-7...-6....1....3...-2....5....6....7....1....6....3....4....2...-5....2
..0....7....6...-1....2...-2...-5...-5...-7...-1...-2...-3...-4....0...-2....0
		

Formula

Empirical: a(n) = 9*a(n-1) -20*a(n-2) +37*a(n-3) +15*a(n-4) +1019*a(n-5) -1134*a(n-6) +3436*a(n-7) +33482*a(n-8) +15474*a(n-9) +29711*a(n-10) +961419*a(n-11) +683896*a(n-12) +1825179*a(n-13) +15748458*a(n-14) +23126370*a(n-15) +38173343*a(n-16) +226830379*a(n-17) +370492092*a(n-18) +693250011*a(n-19) +2421116922*a(n-20) +4560273880*a(n-21) +7732685397*a(n-22) +21366673399*a(n-23) +37358020963*a(n-24) +63795649259*a(n-25) +132130836188*a(n-26) +220084075549*a(n-27) +318734402763*a(n-28) +553875929031*a(n-29) +695960384183*a(n-30) +857140665435*a(n-31) +833509394653*a(n-32) +403752920515*a(n-33) -924869997740*a(n-34) -2684878823886*a(n-35) -6810105192532*a(n-36) -8630146012719*a(n-37) -12489403452239*a(n-38) -7743608923054*a(n-39) -1507226640243*a(n-40) +18531908958781*a(n-41) +28906227483030*a(n-42) +50629889861673*a(n-43) +22778866503951*a(n-44) +24323533799816*a(n-45) -59688930677366*a(n-46) -38033966611133*a(n-47) -104749729554957*a(n-48) +399350631980*a(n-49) -21059823178174*a(n-50) +85765269187723*a(n-51) +27966328288586*a(n-52) +57156462274065*a(n-53) -14225844709762*a(n-54) -2982661267389*a(n-55) -28358226843583*a(n-56) -8687424068816*a(n-57) -9542840100107*a(n-58) +1057363759876*a(n-59) +800556394045*a(n-60) +2669712852110*a(n-61) +1420099373699*a(n-62) +1067445742345*a(n-63) +390958931092*a(n-64) +164491015051*a(n-65) +10906818266*a(n-66) -17627332793*a(n-67) -24118310099*a(n-68) -15592708119*a(n-69) -8905368063*a(n-70) -4235152032*a(n-71) -1857411364*a(n-72) -735078659*a(n-73) -268544470*a(n-74) -91160001*a(n-75) -28521516*a(n-76) -8388791*a(n-77) -2244636*a(n-78) -568333*a(n-79) -129069*a(n-80) -27653*a(n-81) -5088*a(n-82) -876*a(n-83) -123*a(n-84) -15*a(n-85) -a(n-86)
Showing 1-7 of 7 results.