This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193728 #23 Nov 28 2023 16:24:26 %S A193728 1,2,1,8,10,3,32,64,42,9,128,352,360,162,27,512,1792,2496,1728,594,81, %T A193728 2048,8704,15360,14400,7560,2106,243,8192,40960,87552,103680,73440, %U A193728 31104,7290,729,32768,188416,473088,677376,604800,344736,122472,24786,2187 %N A193728 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = (x+2)^n and q(n,x) = (2*x+1)^n. %C A193728 See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. %C A193728 Triangle T(n,k), read by rows, given by (2,2,0,0,0,0,0,0,0,...) DELTA (1,2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Oct 05 2011 %H A193728 G. C. Greubel, <a href="/A193728/b193728.txt">Rows n = 0..50 of the triangle, flattened</a> %F A193728 T(n,k) = 3*T(n-1,k-1) + 4*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - _Philippe Deléham_, Oct 05 2011 %F A193728 G.f.: (1-2*x-2*x*y)/(1-4*x-3*x*y). - _R. J. Mathar_, Aug 11 2015 %F A193728 From _G. C. Greubel_, Nov 28 2023: (Start) %F A193728 T(n, n-k) = A193729(n, k). %F A193728 T(n, 0) = A081294(n). %F A193728 T(n, n-1) = 2*A081038(n-1). %F A193728 T(n, n) = A133494(n). %F A193728 Sum_{k=0..n} T(n, k) = (1/7)*(4*[n=0] + 3*A000420(n)). %F A193728 Sum_{k=0..n} (-1)^k * T(n, k) = A000012(n). %F A193728 Sum_{k=0..floor(n/2)} T(n-k, k) = (5*b(n) + 4*b(n-1))/14 + (2/3)*[n=0]. %F A193728 Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A060816(n), %F A193728 where b(n) = (2 + sqrt(7))^n + (2 - sqrt(7))^n. (End) %e A193728 First six rows: %e A193728 1; %e A193728 2, 1; %e A193728 8, 10, 3; %e A193728 32, 64, 42, 9; %e A193728 128, 352, 360, 162, 27; %e A193728 512, 1792, 2496, 1728, 594, 81; %t A193728 (* First program *) %t A193728 z = 8; a = 1; b = 2; c = 2; d = 1; %t A193728 p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n %t A193728 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; %t A193728 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 %t A193728 g[n_] := CoefficientList[w[n, x], {x}] %t A193728 TableForm[Table[Reverse[g[n]], {n, -1, z}]] %t A193728 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193728 *) %t A193728 TableForm[Table[g[n], {n, -1, z}]] %t A193728 Flatten[Table[g[n], {n, -1, z}]] (* A193729 *) %t A193728 (* Second program *) %t A193728 T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 4*T[n-1,k] + 3*T[n-1,k-1]]]; %t A193728 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 28 2023 *) %o A193728 (Magma) %o A193728 function T(n, k) // T = A193728 %o A193728 if k lt 0 or k gt n then return 0; %o A193728 elif n lt 2 then return n-k+1; %o A193728 else return 4*T(n-1, k) + 3*T(n-1, k-1); %o A193728 end if; %o A193728 end function; %o A193728 [T(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 28 2023 %o A193728 (SageMath) %o A193728 def T(n, k): # T = A193728 %o A193728 if (k<0 or k>n): return 0 %o A193728 elif (n<2): return n-k+1 %o A193728 else: return 4*T(n-1, k) + 3*T(n-1, k-1) %o A193728 flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Nov 28 2023 %Y A193728 Cf. A000012, A000420, A060816, A081038, A081294. %Y A193728 Cf. A084938, A133494, A193722, A193729. %K A193728 nonn,tabl %O A193728 0,2 %A A193728 _Clark Kimberling_, Aug 04 2011