This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193730 #24 Nov 21 2023 17:12:06 %S A193730 1,2,1,4,8,3,8,28,30,9,16,80,144,108,27,32,208,528,648,378,81,64,512, %T A193730 1680,2880,2700,1296,243,128,1216,4896,10800,14040,10692,4374,729,256, %U A193730 2816,13440,36288,60480,63504,40824,14580,2187,512,6400,35328,112896,229824,308448,272160,151632,48114,6561 %N A193730 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = (2x+1)^n and q(n,x) = (2x+1)^n. %C A193730 See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. %C A193730 Triangle T(n,k), read by rows, given by (2,0,0,0,0,0,0,0,...) DELTA (1,2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Oct 05 2011 %H A193730 G. C. Greubel, <a href="/A193730/b193730.txt">Rows n = 0..50 of the triangle, flattened</a> %F A193730 T(n,k) = 3*T(n-1,k-1) + 2*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - _Philippe Deléham_, Oct 05 2011 %F A193730 G.f.: (1-2*x*y)/(1-2*x-3*x*y). - _R. J. Mathar_, Aug 11 2015 %F A193730 From _G. C. Greubel_, Nov 20 2023: (Start) %F A193730 T(n, 0) = A000079(n). %F A193730 T(n, 1) = A130129(n-1). %F A193730 T(n, n) = A133494(n). %F A193730 T(n, n-1) = A199923(n). %F A193730 Sum_{k=0..n} T(n, k) = A005053(n). %F A193730 Sum_{k=0..n} (-1)^k * T(n, k) = A165326(n). (End) %e A193730 First six rows: %e A193730 1; %e A193730 2, 1; %e A193730 4, 8, 3; %e A193730 8, 28, 30, 9; %e A193730 16, 80, 144, 108, 27; %e A193730 32, 208, 528, 648, 378, 81; %t A193730 (* First program *) %t A193730 z = 8; a = 2; b = 1; c = 2; d = 1; %t A193730 p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n %t A193730 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; %t A193730 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 %t A193730 g[n_] := CoefficientList[w[n, x], {x}] %t A193730 TableForm[Table[Reverse[g[n]], {n, -1, z}]] %t A193730 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193730 *) %t A193730 TableForm[Table[g[n], {n, -1, z}]] %t A193730 Flatten[Table[g[n], {n, -1, z}]] (* A193731 *) %t A193730 (* Second program *) %t A193730 T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 2*T[n-1, k] + 3*T[n-1, k-1]]]; %t A193730 Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 20 2023 *) %o A193730 (Magma) %o A193730 function T(n, k) // T = A193730 %o A193730 if k lt 0 or k gt n then return 0; %o A193730 elif n lt 2 then return n-k+1; %o A193730 else return 2*T(n-1, k) + 3*T(n-1, k-1); %o A193730 end if; %o A193730 end function; %o A193730 [T(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 20 2023 %o A193730 (SageMath) %o A193730 def T(n, k): # T = A193730 %o A193730 if (k<0 or k>n): return 0 %o A193730 elif (n<2): return n-k+1 %o A193730 else: return 2*T(n-1, k) + 3*T(n-1, k-1) %o A193730 flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Nov 20 2023 %Y A193730 Cf. A000079, A005053, A084938, A130129, A133494, A165326. %Y A193730 Cf. A193722, A193731, A199923. %K A193730 nonn,tabl %O A193730 0,2 %A A193730 _Clark Kimberling_, Aug 04 2011