This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193731 #26 Nov 22 2023 01:45:01 %S A193731 1,1,2,3,8,4,9,30,28,8,27,108,144,80,16,81,378,648,528,208,32,243, %T A193731 1296,2700,2880,1680,512,64,729,4374,10692,14040,10800,4896,1216,128, %U A193731 2187,14580,40824,63504,60480,36288,13440,2816,256,6561,48114,151632,272160,308448,229824,112896,35328,6400,512 %N A193731 Mirror of the triangle A193730. %C A193731 A193731 is obtained by reversing the rows of the triangle A193730. %C A193731 Triangle T(n,k), read by rows, given by (1,2,0,0,0,0,0,0,0,...) DELTA (2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Oct 05 2011 %H A193731 G. C. Greubel, <a href="/A193731/b193731.txt">Rows n = 0..50 of the triangle, flattened</a> %F A193731 T(n,k) = A193730(n,n-k). %F A193731 T(n,k) = 2*T(n-1,k-1) + 3*T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - _Philippe Deléham_, Oct 05 2011 %F A193731 G.f.: (1-2*x)/(1-3*x-2*x*y). - _R. J. Mathar_, Aug 11 2015 %F A193731 From _G. C. Greubel_, Nov 20 2023: (Start) %F A193731 T(n, 0) = A133494(n). %F A193731 T(n, 1) = 2*A006234(n+2). %F A193731 T(n, 2) = 4*A080420(n-2). %F A193731 T(n, 3) = 8*A080421(n-3). %F A193731 T(n, 4) = 16*A080422(n-4). %F A193731 T(n, 5) = 32*A080423(n-5). %F A193731 T(n, n) = A000079(n). %F A193731 T(n, n-1) = A130129(n-1). %F A193731 Sum_{k=0..n} T(n, k) = A005053(n). %F A193731 Sum_{k=0..n} (-1)^k * T(n, k) = A153881(n). %F A193731 Sum_{k=0..floor(n/2)} T(n-k, k) = A007483(n-1). %F A193731 Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A000012(n). (End) %e A193731 First six rows: %e A193731 1; %e A193731 1, 2; %e A193731 3, 8, 4; %e A193731 9, 30, 28, 8; %e A193731 27, 108, 144, 80, 16; %e A193731 81, 378, 648, 528, 208, 32; %t A193731 (* First program *) %t A193731 z = 8; a = 2; b = 1; c = 2; d = 1; %t A193731 p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n %t A193731 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; %t A193731 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 %t A193731 g[n_] := CoefficientList[w[n, x], {x}] %t A193731 TableForm[Table[Reverse[g[n]], {n, -1, z}]] %t A193731 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193730 *) %t A193731 TableForm[Table[g[n], {n, -1, z}]] %t A193731 Flatten[Table[g[n], {n, -1, z}]] (* A193731 *) %t A193731 (* Second program *) %t A193731 T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 3*T[n-1, k] + 2*T[n -1, k-1]]]; %t A193731 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 20 2023 *) %o A193731 (Magma) %o A193731 function T(n, k) // T = A193731 %o A193731 if k lt 0 or k gt n then return 0; %o A193731 elif n lt 2 then return k+1; %o A193731 else return 3*T(n-1, k) + 2*T(n-1, k-1); %o A193731 end if; %o A193731 end function; %o A193731 [T(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 20 2023 %o A193731 (SageMath) %o A193731 def T(n, k): # T = A193731 %o A193731 if (k<0 or k>n): return 0 %o A193731 elif (n<2): return k+1 %o A193731 else: return 3*T(n-1, k) + 2*T(n-1, k-1) %o A193731 flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Nov 20 2023 %Y A193731 Cf. A000012, A000079, A005053, A006234, A007483, A080420, A080421. %Y A193731 Cf. A080422, A080423, A084938, A130129, A133494, A153881. %Y A193731 Cf. A193722, A193730. %K A193731 nonn,tabl %O A193731 0,3 %A A193731 _Clark Kimberling_, Aug 04 2011