A193740 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=q(n,x) in A193738.
1, 1, 1, 1, 3, 3, 1, 4, 9, 9, 1, 4, 10, 19, 19, 1, 4, 10, 20, 34, 34, 1, 4, 10, 20, 35, 55, 55, 1, 4, 10, 20, 35, 56, 83, 83, 1, 4, 10, 20, 35, 56, 84, 119, 119, 1, 4, 10, 20, 35, 56, 84, 120, 164, 164, 1, 4, 10, 20, 35, 56, 84, 120, 165, 219, 219, 1, 4, 10, 20, 35, 56
Offset: 0
Examples
First six rows: 1 1....1 1....3....3 1....4....9....9 1....4....10....19...19 1....4....10....20...34...34
Programs
-
Mathematica
z = 12; p[0, x_] := 1 p[n_, x_] := n + Sum[(k + 1) x^(n - k), {k, 0, n - 1}] q[n_, x_] := p[n, x] t[n_, k_] := Coefficient[p[n, x], x^(n - k)]; t[n_, n_] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193740 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193741 *)
Comments