This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193763 #25 May 31 2025 06:45:45 %S A193763 1,2,6,22,94,462,2606,16862,124782,1048990,9921550,104447550, %T A193763 1211190638,15329157278,210093682254,3097760346238,48869022535726, %U A193763 821007386273118,14630266558195214,275575669958063678,5469996402416702958,114107289124208861470 %N A193763 Number of signed permutations of length n avoiding (-2, 1) and (2, -1). %C A193763 Also the number of signed permutations of length 2*n invariant under Dbar and avoiding (-1, 2) and (1, -2). %C A193763 Also the number of signed permutations of length 2*n invariant under R180bar and avoiding (-1, 2) and (1, -2). %F A193763 a(0) = 1, and for n > 0, a(n) = n! + Sum_{j=0..n-1} (n-j)! * a(j). %F A193763 a(n) is the sum of top row terms of M^n, M = an infinite square production matrix as follows: %F A193763 1, 1, 0, 0, 0, 0,... %F A193763 2, 0, 2, 0, 0, 0,... %F A193763 3, 0, 0, 3, 0, 0,... %F A193763 4, 0, 0, 0, 4, 0,... %F A193763 5, 0, 0, 0, 0, 5,... %F A193763 ... The upper left term of M^n = A051296(n). - _Gary W. Adamson_, Sep 26 2011 %e A193763 For n = 2, the 6 permutations are (2, 1), (-2, -1), (1, 2), (1, -2), (-1, 2), and (-1, -2). %e A193763 a(3) = 22 = sum of top row terms of M^3 = (11 + 3 + 2 + 6); where 11 = A051296(3). %p A193763 b := proc(n) option remember; if n = 0 then 2 else %p A193763 add(factorial(k)*b(n-k), k=1..n) fi end: %p A193763 a := n -> if n = 0 then return 1 else b(n) end: %p A193763 seq(a(n), n=0..21); # _Peter Luschny_, Dec 07 2018 %Y A193763 Cf. A051296. %K A193763 nonn %O A193763 0,2 %A A193763 _Andy Hardt_, Aug 04 2011 %E A193763 More terms from _Joerg Arndt_, Aug 16 2011