This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193770 #19 Feb 23 2019 04:22:32 %S A193770 1,2,3,5,4,13,14,7,14,63,41,16,17,64,313,122,43,26,67,314,1563,365, %T A193770 124,53,76,317,1564,7813,1094,367,134,103,326,1567,7814,39063,3281, %U A193770 1096,377,184,353,1576,7817,39064,195313,9842,3283,1106,427,434,1603,7826,39067,195314 %N A193770 Table T(m,n) = (5^m + 3^n)/2, m,n = 0,1,2,..., read by antidiagonals. %C A193770 Sequence A193769 lists the elements of the array in order of increasing size. Sequence A081458 is the subtable with every other row and column deleted (i.e., m,n=0,2,4,...). (The earlier existence of that table in the OEIS has motivated the definition of the present sequence/table.) %C A193770 Looking at the example one can notice the periodicity of the final digit(s) of the terms; it is easy to prove these formulas. - _M. F. Hasler_, Jan 06 2013 %H A193770 Ivan Neretin, <a href="/A193770/b193770.txt">Table of n, a(n) for n = 0..5049</a> %F A193770 T(m,n+4) = T(m,n) (mod 10), %F A193770 T(m+1,n) = T(m,n) (mod 10) for m > 0, %F A193770 T(m+1,n) = T(m,n) + 50 (mod 100) for m > 1, etc. - _M. F. Hasler_, Jan 06 2013 %e A193770 The upper left part of the infinite square array reads: %e A193770 [ 1 2 5 14 41 122 365 1094 3281 ...] %e A193770 [ 3 4 7 16 43 124 367 1096 3283 ...] %e A193770 [ 13 14 17 26 53 134 377 1106 3293 ...] %e A193770 [ 63 64 67 76 103 184 427 1156 3343 ...] %e A193770 [ 313 314 317 326 353 434 677 1406 3593 ...] %e A193770 [1563 1564 1567 1576 1603 1684 1927 2656 4843 ...] %e A193770 [7813 7814 7817 7826 7853 7934 8177 8906 11093 ...] %e A193770 [...] %t A193770 Flatten@Table[(5^j + 3^(i - j))/2, {i, 0, 8}, {j, 0, i}] (* _Ivan Neretin_, Sep 07 2017 *) %o A193770 (PARI) for(x=0,10,for(y=0,x, print1((3^(x-y)+5^y)/2 ","))) \\ prints this sequence; to get the table, use matrix(7,9,m,n,3^n/3+5^m/5)/2 \\ _M. F. Hasler_, Jan 06 2013 %K A193770 nonn,tabl %O A193770 0,2 %A A193770 _M. F. Hasler_, Jan 01 2013