This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193776 #9 Apr 10 2024 09:13:18 %S A193776 1,2,3,5,12,17,65,80,473,527,4444,4679,51391,52628,703659,711449, %T A193776 11098896,11156477,197809793,198299024,3927270089,3931960343, %U A193776 85908742132,85958728847,2052375195679,2052960568556,53160174898371,53167638586121,1483752628890840,1483855482962885,44391655829672177 %N A193776 Number of signed permutations of length n invariant under the reverse complement and avoiding (-2, -1), (-2, 1), (2, -1). %F A193776 a(2k) = 2^k k! + \sum_{j=0}^{k-1}(k-j-1)! a(2j) %F A193776 a(2k+1) = (2^k + 1)k! + \sum_{j=0}^{k-1}(k-j-1)! a(2j+1) %e A193776 For n = 2, the permutations are (1, 2), (2, 1), (-1, -2), (-2, -1). %t A193776 a[n_] := a[n] = If[EvenQ[n], %t A193776 Sum[a[2j]*(n/2 - j - 1)!, {j, 0, n/2 - 1}] + 2^(n/2)*(n/2)!, %t A193776 Sum[a[2j+1]*((1/2)*(n - 2j - 3))!, {j, 0, (n - 3)/2}] + %t A193776 (2^((n - 1)/2) + 1)*((n - 1)/2)!]; %t A193776 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Apr 10 2024 *) %K A193776 nonn %O A193776 0,2 %A A193776 _Andy Hardt_, Aug 04 2011