This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193787 #5 Mar 30 2012 18:57:38 %S A193787 1,1,1,1,1,2,1,2,1,4,1,3,3,1,8,1,4,6,4,1,16,1,5,10,10,5,1,32,1,6,15, %T A193787 20,15,6,1,64,1,7,21,35,35,21,7,1,128,1,8,28,56,70,56,28,8,1,256,1,9, %U A193787 36,84,126,126,84,36,9,1,512,1,10,45,120,210,252,210,120,45,10,1 %N A193787 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+1)^n and q(n,x)=1+x^n. %C A193787 See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. A193787 is the mirror (obtained by reversing rows) of A193554. %e A193787 First six rows: %e A193787 1 %e A193787 1....1 %e A193787 1....1....2 %e A193787 1....2....1....4 %e A193787 1....3....3....1...8 %e A193787 1....4....6....4...1...16 %e A193787 (viz., Pascal's triangle with row sum at end of each row) %t A193787 z = 12; a = 1; b = 1; %t A193787 p[n_, x_] := (a*x + b)^n %t A193787 q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0; %t A193787 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; %t A193787 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 %t A193787 g[n_] := CoefficientList[w[n, x], {x}] %t A193787 TableForm[Table[Reverse[g[n]], {n, -1, z}]] %t A193787 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193787 *) %t A193787 TableForm[Table[g[n], {n, -1, z}]] %t A193787 Flatten[Table[g[n], {n, -1, z}]] (* A193554 *) %Y A193787 Cf. A193722, A193554. %K A193787 nonn,tabl %O A193787 0,6 %A A193787 _Clark Kimberling_, Aug 05 2011