This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193788 #4 Mar 30 2012 18:57:38 %S A193788 1,1,1,2,1,3,4,4,1,9,8,12,6,1,27,16,32,24,8,1,81,32,80,80,40,10,1,243, %T A193788 64,192,240,160,60,12,1,729,128,448,672,560,280,84,14,1,2187,256,1024, %U A193788 1792,1792,1120,448,112,16,1,6561,512,2304,4608,5376,4032,2016 %N A193788 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+1)^n and q(n,x)=1+x^n. %C A193788 See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. %e A193788 First six rows: %e A193788 1 %e A193788 1....1 %e A193788 2....1....3 %e A193788 4....4....1....9 %e A193788 8....12...6....1...27 %e A193788 16...32...24...8...1...81 %e A193788 (viz., A038207 with row sums at end of rows) %t A193788 z = 10; a = 1; b = 2; %t A193788 p[n_, x_] := (a*x + b)^n %t A193788 q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0; %t A193788 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; %t A193788 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 %t A193788 g[n_] := CoefficientList[w[n, x], {x}] %t A193788 TableForm[Table[Reverse[g[n]], {n, -1, z}]] %t A193788 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193788 *) %t A193788 TableForm[Table[g[n], {n, -1, z}]] %t A193788 Flatten[Table[g[n], {n, -1, z}]] (* A193789 *) %Y A193788 Cf. A193722, A038207, A193789. %K A193788 nonn,tabl %O A193788 0,4 %A A193788 _Clark Kimberling_, Aug 05 2011