This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193789 #7 Apr 25 2013 17:23:34 %S A193789 1,1,1,3,1,2,9,1,4,4,27,1,6,12,8,81,1,8,24,32,16,243,1,10,40,80,80,32, %T A193789 729,1,12,60,160,240,192,64,2187,1,14,84,280,560,672,448,128,6561,1, %U A193789 16,112,448,1120,1792,1792,1024,256,19683,1,18,144,672,2016,4032 %N A193789 Mirror of the triangle A193788. %C A193789 A193789 is obtained by reversing the rows of the triangle A193788. %F A193789 Write w(n,k) for the triangle at A193788. The triangle at A193789 is then given by w(n,n-k). %e A193789 First six rows: %e A193789 1 %e A193789 1....1 %e A193789 3....1....2 %e A193789 9....1....4....4 %e A193789 27...1....6....12...8 %e A193789 81...1....8....24...32...16 %t A193789 z = 10; a = 1; b = 2; %t A193789 p[n_, x_] := (a*x + b)^n %t A193789 q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0; %t A193789 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; %t A193789 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 %t A193789 g[n_] := CoefficientList[w[n, x], {x}] %t A193789 TableForm[Table[Reverse[g[n]], {n, -1, z}]] %t A193789 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193788 *) %t A193789 TableForm[Table[g[n], {n, -1, z}]] %t A193789 Flatten[Table[g[n], {n, -1, z}]] (* A193789 *) %Y A193789 Cf. A193788, A038207. %K A193789 nonn,tabl %O A193789 0,4 %A A193789 _Clark Kimberling_, Aug 05 2011