This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193790 #4 Mar 30 2012 18:57:38 %S A193790 1,1,1,1,2,3,1,4,4,9,1,6,12,8,27,1,8,24,32,16,81,1,10,40,80,80,32,243, %T A193790 1,12,60,160,240,192,64,729,1,14,84,280,560,672,448,128,2187,1,16,112, %U A193790 448,1120,1792,1792,1024,256,6561,1,18,144,672,2016,4032,5376 %N A193790 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(2x+1)^n and q(n,x)=1+x^n. %C A193790 See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. %e A193790 First six rows: %e A193790 1 %e A193790 1....1 %e A193790 1....2....3 %e A193790 1....4....4....9 %e A193790 1....6....12....8...27 %e A193790 1....8....24....32...16...81 %t A193790 z = 10; a = 2; b = 1; %t A193790 p[n_, x_] := (a*x + b)^n %t A193790 q[n_, x_] := 1 + x^n ; q[n_, 0] := q[n, x] /. x -> 0; %t A193790 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; %t A193790 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 %t A193790 g[n_] := CoefficientList[w[n, x], {x}] %t A193790 TableForm[Table[Reverse[g[n]], {n, -1, z}]] %t A193790 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193790 *) %t A193790 TableForm[Table[g[n], {n, -1, z}]] %t A193790 Flatten[Table[g[n], {n, -1, z}]] (* A193791 *) %Y A193790 Cf. A193791. %K A193790 nonn,tabl %O A193790 0,5 %A A193790 _Clark Kimberling_, Aug 05 2011