This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193804 #12 Jul 30 2013 04:06:39 %S A193804 0,1,0,1,1,0,2,2,1,0,1,2,1,1,0,4,2,3,2,1,0,1,4,2,2,1,1,0,4,2,4,3,2,2, %T A193804 1,0,3,4,2,4,1,3,1,1,0,6,4,5,3,5,3,2,2,1,0,1,6,3,4,2,4,1,2,1,1,0,8,2, %U A193804 7,5,5,4,4,3,3,2,1,0,1,8,2,6,4,5,1,4,2,2,1,1,0 %N A193804 Square array read by antidiagonals: S(n,k) = n - A193805(n,k). %C A193804 Let cophi(n) be the cototient function A051953(n). Then cophi(n) = S(n,1) = S(n,n). %H A193804 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/EulerTotient">Euler's totient function</a> %e A193804 [x][1][2][3][4][5][6][7][8] %e A193804 [1] 0, 0, 0, 0, 0, 0, 0, 0 %e A193804 [2] 1, 1, 1, 1, 1, 1, 1, 1 %e A193804 [3] 1, 2, 1, 2, 1, 2, 1, 2 %e A193804 [4] 2, 2, 3, 2, 2, 3, 2, 2 %e A193804 [5] 1, 2, 2, 3, 1, 3, 1, 3 %e A193804 [6] 4, 4, 4, 4, 5, 4, 4, 4 %e A193804 [7] 1, 2, 2, 3, 2, 4, 1, 3 %e A193804 [8] 4, 4, 5, 4, 5, 5, 5, 4 %e A193804 Triangle k=1..n, n>=1: %e A193804 [1] 0 %e A193804 [2] 1, 1 %e A193804 [3] 1, 2, 1 %e A193804 [4] 2, 2, 3, 2 %e A193804 [5] 1, 2, 2, 3, 1 %e A193804 [6] 4, 4, 4, 4, 5, 4 %e A193804 [7] 1, 2, 2, 3, 2, 4, 1 %e A193804 [8] 4, 4, 5, 4, 5, 5, 5, 4 %e A193804 Triangle n=1..k, k>=1: %e A193804 [1] 0 %e A193804 [2] 0, 1 %e A193804 [3] 0, 1, 1 %e A193804 [4] 0, 1, 2, 2 %e A193804 [5] 0, 1, 1, 2, 1 %e A193804 [6] 0, 1, 2, 3, 3, 4 %e A193804 [7] 0, 1, 1, 2, 1, 4, 1 %e A193804 [8] 0, 1, 2, 2, 3, 4, 3, 4 %e A193804 S(15, 22) = card({2,3,5,6,9,10,11,12,15}) = 9 as %e A193804 the defining set is {1,2,..,15} minus {1,4,7,8,13,14}. %p A193804 strongdivisors := n -> numtheory[divisors](n) minus {1}: %p A193804 coprimes := n -> select(k->igcd(k,n)=1,{$1..n}): %p A193804 S := (n,k) -> nops({seq(i,i={$1..n})} %p A193804 minus((coprimes(n) minus strongdivisors(k)))): %p A193804 seq(seq(S(n-k+1,k), k=1..n), n=1..8); # Square array by antidiagonals. %p A193804 seq(print(seq(S(n, k), k=1..n)), n=1..8); # Lower triangle. %p A193804 seq(print(seq(S(n, k), n=1..k)), k=1..8); # Upper triangle. %t A193804 s[n_, k_] := Complement[ Range[n], Complement[ Select[ Range[n], CoprimeQ[#, n]&], Divisors[k] // Rest]] // Length; Table[ s[n-k+1, k], {n, 1, 13}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jul 30 2013 *) %Y A193804 Cf. A000010, A051953, A193805. %K A193804 nonn,tabl %O A193804 1,7 %A A193804 Peter Luschny, Aug 06 2011