This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193805 #20 Aug 01 2016 01:08:04 %S A193805 1,1,1,2,1,1,2,1,1,1,4,2,2,1,1,2,3,1,1,1,1,6,2,3,2,2,1,1,4,5,2,2,2,1, %T A193805 1,1,6,4,5,2,4,1,2,1,1,4,5,3,4,1,2,2,1,1,1,10,4,6,4,5,2,4,2,2,1,1,4,9, %U A193805 3,4,3,3,2,2,1,1,1,1,12,4,9,4,5,3,6,2 %N A193805 Square array read by antidiagonals: S(n,k) is the number of m which are prime to n and are not strong divisors of k. %C A193805 We say d is a strong divisor of n iff d is a divisor of n and d > 1. Let phi(n) be Euler's totient function. Then phi(n) = S(n,1) = S(n,n). Thus S(n,k) can be regarded as a generalization of the totient function. %H A193805 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/EulerTotient">Euler's totient function</a> %e A193805 [x][1][2][3][4][5][6][7][8] %e A193805 [1] 1, 1, 1, 1, 1, 1, 1, 1 %e A193805 [2] 1, 1, 1, 1, 1, 1, 1, 1 %e A193805 [3] 2, 1, 2, 1, 2, 1, 2, 1 %e A193805 [4] 2, 2, 1, 2, 2, 1, 2, 2 %e A193805 [5] 4, 3, 3, 2, 4, 2, 4, 2 %e A193805 [6] 2, 2, 2, 2, 1, 2, 2, 2 %e A193805 [7] 6, 5, 5, 4, 5, 3, 6, 4 %e A193805 [8] 4, 4, 3, 4, 3, 3, 3, 4 %e A193805 Triangle k=1..n, n>=1: %e A193805 [1] 1 %e A193805 [2] 1, 1 %e A193805 [3] 2, 1, 2 %e A193805 [4] 2, 2, 1, 2 %e A193805 [5] 4, 3, 3, 2, 4 %e A193805 [6] 2, 2, 2, 2, 1, 2 %e A193805 [7] 6, 5, 5, 4, 5, 3, 6 %e A193805 [8] 4, 4, 3, 4, 3, 3, 3, 4 %e A193805 Triangle n=1..k, k>=1: %e A193805 [1] 1 %e A193805 [2] 1, 1 %e A193805 [3] 1, 1, 2 %e A193805 [4] 1, 1, 1, 2 %e A193805 [5] 1, 1, 2, 2, 4 %e A193805 [6] 1, 1, 1, 1, 2, 2 %e A193805 [7] 1, 1, 2, 2, 4, 2, 6 %e A193805 [8] 1, 1, 1, 2, 2, 2, 4, 4 %e A193805 S(15, 22) = card({1,4,7,8,13,14}) = 6 because the coprimes of 15 are {1,2,4,7,8,11,13,14} and the strong divisors of 22 are {2, 11, 22}. %p A193805 strongdivisors := n -> numtheory[divisors](n) minus {1}: %p A193805 coprimes := n -> select(k->igcd(k,n)=1,{$1..n}): %p A193805 S := (n,k) -> nops(coprimes(n) minus strongdivisors(k)): %p A193805 seq(seq(S(n-k+1,k), k=1..n),n=1..13); # Square array by antidiagonals. %p A193805 seq(print(seq(S(n,k),k=1..n)),n=1..8); # Lower triangle. %p A193805 seq(print(seq(S(n,k),n=1..k)),k=1..8); # Upper triangle. %t A193805 s[n_, k_] := Complement[ Select[ Range[n], GCD [#, n] == 1 &], Rest[ Divisors[k]]] // Length; Table[ s[n-k+1, k], {n, 1, 13}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 25 2013 *) %o A193805 (PARI) S(n,k)=eulerphi(n)-sumdiv(k,d, gcd(d,n)==1 && d<n && d>1) %o A193805 for(s=2,15, for(k=1,s-1, print1(S(s-k,k)", "))) \\ _Charles R Greathouse IV_, Aug 01 2016 %Y A193805 Cf. A000010, A051953, A193804. %K A193805 nonn,nice,tabl %O A193805 1,4 %A A193805 Peter Luschny, Aug 05 2011