This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193818 #22 Jan 22 2020 16:23:30 %S A193818 1,2,1,4,6,2,8,16,12,3,16,40,40,20,4,32,96,120,80,30,5,64,224,336,280, %T A193818 140,42,6,128,512,896,896,560,224,56,7,256,1152,2304,2688,2016,1008, %U A193818 336,72,8,512,2560,5760,7680,6720,4032,1680,480,90,9,1024,5632 %N A193818 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = x^n + x^(n-1) + ... + x+1 and q(n,x)=(2x+1)^n. %C A193818 See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. %C A193818 Triangle T(n,k), read by rows, given by (2,0,-2,2,0,0,0,0,0,0,0,...) DELTA (1,1,-1,1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Oct 05 2011 %F A193818 T(n,k) = A193815(n,k)*2(n-k). %F A193818 T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) - T(n-2,k-2), T(0,0)=T(1,1)=1, T(1,0)=2, T(2,0)=4, T(2,1)=6, T(2,2)=2, T(n,k)=0 if k < 0 or if k > n. - _Philippe Deléham_, Dec 15 2013 %F A193818 G.f.: (1-x*y+2*x^2*y+x^2*y^2)/((-1+2*x+x*y)*(x*y-1)). - _R. J. Mathar_, Aug 11 2015 %e A193818 First six rows: %e A193818 1; %e A193818 2, 1; %e A193818 4, 6, 2; %e A193818 8, 16, 12, 3; %e A193818 16, 40, 40, 20, 4; %e A193818 32, 96, 120, 80, 30, 5; %t A193818 z = 10; c = 2; d = 1; %t A193818 p[0, x_] := 1 %t A193818 p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0; %t A193818 q[n_, x_] := (c*x + d)^n %t A193818 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; %t A193818 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 %t A193818 g[n_] := CoefficientList[w[n, x], {x}] %t A193818 TableForm[Table[Reverse[g[n]], {n, -1, z}]] %t A193818 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193818 *) %t A193818 TableForm[Table[g[n], {n, -1, z}]] %t A193818 Flatten[Table[g[n], {n, -1, z}]] (* A193819 *) %Y A193818 Cf. A084938, A193815, A193722, A193819. %K A193818 nonn,tabl %O A193818 0,2 %A A193818 _Clark Kimberling_, Aug 06 2011