A193819 Mirror of the triangle A193818.
1, 1, 2, 2, 6, 4, 3, 12, 16, 8, 4, 20, 40, 40, 16, 5, 30, 80, 120, 96, 32, 6, 42, 140, 280, 336, 224, 64, 7, 56, 224, 560, 896, 896, 512, 128, 8, 72, 336, 1008, 2016, 2688, 2304, 1152, 256, 9, 90, 480, 1680, 4032, 6720, 7680, 5760, 2560, 512, 10, 110, 660
Offset: 0
Examples
First six rows: 1; 1, 2; 2, 6, 4; 3, 12, 16, 8; 4, 20, 40, 40, 16; 5, 30, 80, 120, 96, 32;
Programs
-
Mathematica
z = 10; c = 2; d = 1; p[0, x_] := 1 p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193818 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193819 *)
Formula
Triangle T(n,k), read by rows, given by (1,1,-1,1,0,0,0,0,0,0,0,...) DELTA (2,0,-2,2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011
T(n,k) = A153861(n,k)*2^k. - Philippe Deléham, Oct 09 2011
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1), T(0,0)=T(1,0)=1, T(1,1)=T(2,0)=2, T(2,1)=6, T(2,2)=4, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Dec 15 2013
G.f.: (1-x+x^2+2*x^2*y)/((x-1)*(-1+x+2*x*y)). - R. J. Mathar, Aug 12 2015
Comments