This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193820 #30 Jan 10 2025 10:04:18 %S A193820 1,1,1,1,2,2,1,3,4,4,1,4,7,8,8,1,5,11,15,16,16,1,6,16,26,31,32,32,1,7, %T A193820 22,42,57,63,64,64,1,8,29,64,99,120,127,128,128,1,9,37,93,163,219,247, %U A193820 255,256,256,1,10,46,130,256,382,466,502,511,512,512,1,11,56 %N A193820 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+1)^n and q(n,x)=x^n+x^(n-1)+...+x+1. %C A193820 See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. %C A193820 Variant of A054143 and A008949. - _R. J. Mathar_, Mar 03 2013 %F A193820 From _Peter Bala_, Jul 16 2013: (Start) %F A193820 T(n,k) = sum {i = 0..k} binomial(n-1,k-i) for 0 <= k <= n. %F A193820 O.g.f.: (1 - x*t)^2/( (1 - 2*x*t)*(1 - (1 + x)*t) ) = 1 + (1 + x)*t + (1 + 2*x + 2*x^2)*t^2 + .... %F A193820 The n-th row polynomial R(n,x) for n >= 1 is given by R(n,x) = 1/(1 - x)*( (x + 1)^(n-1) - 2^(n-1)*x^(n+1) ). Cf. A193823. (End) %e A193820 First six rows: %e A193820 1 %e A193820 1....1 %e A193820 1....2....2 %e A193820 1....3....4....4 %e A193820 1....4....7....8....8 %e A193820 1....5....11...15...16...16 %p A193820 A193820 := (n,k) -> `if`(k=0 or n=0,1, A193820(n-1,k-1)+A193820(n-1,k)); %p A193820 seq(print(seq(A193820(n,k),k=0..n+1)),n=0..10); # _Peter Luschny_, Jan 22 2012 %t A193820 z = 10; a = 1; b = 1; %t A193820 p[n_, x_] := (a*x + b)^n %t A193820 q[0, x_] := 1 %t A193820 q[n_, x_] := x*q[n - 1, x] + 1; q[n_, 0] := q[n, x] /. x -> 0; %t A193820 t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; %t A193820 w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 %t A193820 g[n_] := CoefficientList[w[n, x], {x}] %t A193820 TableForm[Table[Reverse[g[n]], {n, -1, z}]] %t A193820 Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193820 *) %t A193820 TableForm[Table[g[n], {n, -1, z}]] %t A193820 Flatten[Table[g[n], {n, -1, z}]] (* A128175 *) %Y A193820 Cf. A193722, A128175, A193823, A045623 (row sums), A009766. %Y A193820 Cf. A054143, A008949. %K A193820 nonn,tabl %O A193820 0,5 %A A193820 _Clark Kimberling_, Aug 06 2011