This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193829 #33 Jun 25 2015 16:13:00 %S A193829 1,2,1,2,4,1,1,3,6,1,2,4,2,6,1,3,5,10,1,1,1,2,6,12,1,5,7,2,2,10,1,2,4, %T A193829 8,16,1,1,3,3,9,18,1,2,1,5,10,2,4,14,1,9,11,22,1,1,1,2,2,4,12,4,20,1, %U A193829 11,13,2,6,18,1,2,3,7,14,28,1,1,2,1,4,5,15,30 %N A193829 Irregular triangle read by rows in which row n lists the differences between consecutive divisors of n. %C A193829 The sum of row n gives A000027(n-1). The product of row n gives A057449(n). Row n has length A032741(n). The final term of row n is A060681(n). It appears that the first term of row n is A057237(n). %H A193829 Alois P. Heinz, <a href="/A193829/b193829.txt">Rows n = 2..1600, flattened</a> %H A193829 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/poldiv05.jpg">Illustration of divisors of n</a> %H A193829 Wikipedia, <a href="http://en.wikipedia.org/wiki/Table_of_divisors">Table of divisors</a> %F A193829 T(n,k) = A027750(n,k+1)-A027750(n,k). - R. J. Mathar, Sep 01 2011 %e A193829 Written as a triangle: %e A193829 1, %e A193829 2, %e A193829 1, 2, %e A193829 4, %e A193829 1, 1, 3, %e A193829 6, %e A193829 1, 2, 4, %e A193829 2, 6, %e A193829 1, 3, 5, %e A193829 10, %e A193829 1, 1, 1, 2, 6 %t A193829 Flatten[Table[Differences[Divisors[n]], {n, 2, 30}]] (* _T. D. Noe_, Aug 31 2011 *) %o A193829 (Haskell) %o A193829 import Data.List (genericIndex) %o A193829 a193829 n k = genericIndex a193829_tabf (n - 1) !! (k - 1) %o A193829 a193829_row n = genericIndex a193829_tabf (n - 1) %o A193829 a193829_tabf = zipWith (zipWith (-)) %o A193829 (map tail a027750_tabf') a027750_tabf' %o A193829 -- _Reinhard Zumkeller_, Jun 25 2015, Jun 23 2013 %Y A193829 Cf. A027750, A032742. %Y A193829 Cf. A060682 (distinct terms per row), A060680 (row minima), A060681 (row maxima). %K A193829 nonn,tabf,easy %O A193829 2,2 %A A193829 _Omar E. Pol_, Aug 31 2011