cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193839 Smallest possible value of the maximum of squared distances between any two out of n points with integer coordinates and distinct mutual distances.

This page as a plain text file.
%I A193839 #13 Dec 26 2019 17:15:28
%S A193839 1,5,10,20,37,50,73,100,137,185,241,292
%N A193839 Smallest possible value of the maximum of squared distances between any two out of n points with integer coordinates and distinct mutual distances.
%e A193839 Configurations minimizing the maximum distance between 2 points:
%e A193839 a(2)=1: ((0,0),(0,1)), dist^2={1}
%e A193839 a(3)=5: ((0,0),(0,1)),(1,2), dist^2={1,2,5}
%e A193839 a(4)=10: ((0,0),(0,1),(2,1),(3,0)), dist^2={1,2,4,5,9,10}
%e A193839 a(5)=20: ((0,1),(1,0),(2,4),(3,2),(3,4)), dist^2={1,2,4,5,8,10,13,17,18,20}
%e A193839 a(6)=37: ((0,1),(1,1),(2,2),(4,2),(4,5),(6,0)), dist^2={1,2,4,5,8,9,10,13,17,20,25,26,29,32,37}
%e A193839 a(7)=50: (( 0,5),(1,2),(1,4),(3,0),(3,5),(7,4),(7,5)), dist^2={1,2,4,5,8,9,10,13,16,17,20,25,32,34,36,37,40,41,45,49,50}
%e A193839 From _Bert Dobbelaere_, Dec 26 2019: (Start)
%e A193839 a(8)=73: ((0,0),(8,3),(6,6),(8,1),(6,5),(5,0),(0,3),(1,1))
%e A193839 a(9)=100: ((0,0),(8,6),(7,7),(5,8),(9,1),(9,0),(6,4),(0,4),(2,0))
%e A193839 a(10)=137: ((0,3),(11,7),(9,10),(11,3),(9,9),(5,11),(6,0),(6,2),(3,3),(1,2))
%e A193839 a(11)=185: ((1,0),(12,8),(7,12),(0,13),(9,10),(10,9),(4,12),(3,12),(9,3),(1,8),(1,2))
%e A193839 a(12)=241: ((0,1),(15,5),(8,14),(13,8),(10,9),(4,12),(7,9),(10,0),(8,0),(0,6),(2,0),(0,2))
%e A193839 a(13)=292: ((0,8),(16,14),(15,15),(16,6),(16,8),(13,1),(14,12),(11,0),(13,8),(7,0),(6,15),(4,4),(0,9))
%e A193839 (End)
%Y A193839 Cf. A193838, A193555, A193556 configurations minimizing radius of enclosing circle.
%K A193839 nonn,hard,more
%O A193839 2,2
%A A193839 _Hugo Pfoertner_, Aug 06 2011
%E A193839 a(10)-a(13) from _Bert Dobbelaere_, Dec 26 2019