A193850 Triangular array: the fission of ((x+2)^n) by (q(n,x)) given by q(n,x)=x^n+x^(n-1)+...+x+1.
2, 4, 8, 8, 20, 26, 16, 48, 72, 80, 32, 112, 192, 232, 242, 64, 256, 496, 656, 716, 728, 128, 576, 1248, 1808, 2088, 2172, 2186, 256, 1280, 3072, 4864, 5984, 6432, 6544, 6560, 512, 2816, 7424, 12800, 16832, 18848, 19520, 19664, 19682, 1024, 6144
Offset: 0
Examples
First six rows: 2 4....8 8....20....26 16...48....72....80 32...112...192...232....242 64...256...496...656....716...728
Programs
-
Mathematica
z = 10; p[n_, x_] := (x + 2)^n; q[0, x_] := 1; q[n_, x_] := x*q[n - 1, x] + 1; p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193850 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A193851 *) TableForm[Table[Reverse[h[n]/2], {n, 0, z}]] Flatten[Table[Reverse[h[n]]/2, {n, -1, z}]] (* A193852 *) TableForm[Table[h[n]/2, {n, 0, z}]] Flatten[Table[h[n]/2, {n, -1, z}]] (* A193853 *)
Comments