This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193858 #22 Feb 18 2024 13:39:11 %S A193858 1,2,3,4,10,7,8,28,34,15,16,72,124,98,31,32,176,392,444,258,63,64,416, %T A193858 1136,1672,1404,642,127,128,960,3104,5616,6152,4092,1538,255,256,2176, %U A193858 8128,17440,23536,20488,11260,3586,511,512,4864,20608,51136,81952 %N A193858 Triangular array: the fission of ((x+1)^n) by ((2x+1)^n). %C A193858 See A193842 for the definition of fission of two sequences of polynomials or triangular arrays. %H A193858 Andrew Howroyd, <a href="/A193858/b193858.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %F A193858 From _Andrew Howroyd_, Feb 18 2024: (Start) %F A193858 T(n,k) = Sum_{j=0..k} 2^(n-j) * binomial(n-j,k-j). %F A193858 G.f.: A(x,y) = 1/(1 - (2 + 3*y)*x + 2*y*(1 + y)*x^2). (End) %e A193858 First six rows: %e A193858 1 %e A193858 2 3 %e A193858 4 10 7 %e A193858 8 28 34 15 %e A193858 16 72 124 98 31 %e A193858 32 176 392 444 258 63 %p A193858 # The function 'fission' is defined in A193842. %p A193858 A193858_row := n -> fission((n,x) -> (x+1)^n, (n,x) -> (2*x+1)^n, n); %p A193858 for n from 0 to 5 do A193858_row(n) od; # _Peter Luschny_, Jul 23 2014 %t A193858 z = 10; %t A193858 p[n_, x_] := (x + 1)^n; %t A193858 q[n_, x_] := (2 x + 1)^n; %t A193858 p1[n_, k_] := Coefficient[p[n, x], x^k]; %t A193858 p1[n_, 0] := p[n, x] /. x -> 0; %t A193858 d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] %t A193858 h[n_] := CoefficientList[d[n, x], {x}] %t A193858 TableForm[Table[Reverse[h[n]], {n, 0, z}]] %t A193858 Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* this sequence *) %t A193858 TableForm[Table[h[n], {n, 0, z}]] %t A193858 Flatten[Table[h[n], {n, -1, z}]] (* A193859 *) %o A193858 (Sage) # uses[fission from A193842] %o A193858 A193858_row = lambda k: fission(lambda n,x: (x+1)^n, lambda n,x: (2*x+1)^n, k) %o A193858 for n in range(7): A193858_row(n) # _Peter Luschny_, Jul 23 2014 %o A193858 (PARI) T(n,k)={sum(j=0, k, 2^(n-j) * binomial(n-j, k-j))} \\ _Andrew Howroyd_, Feb 18 2024 %Y A193858 Cf. A193842, A193859. %K A193858 nonn,tabl %O A193858 0,2 %A A193858 _Clark Kimberling_, Aug 07 2011