A193871 Square array T(n,k) = k^n - k + 1 read by antidiagonals.
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 13, 1, 1, 31, 79, 61, 21, 1, 1, 63, 241, 253, 121, 31, 1, 1, 127, 727, 1021, 621, 211, 43, 1, 1, 255, 2185, 4093, 3121, 1291, 337, 57, 1, 1, 511, 6559, 16381, 15621, 7771, 2395, 505, 73, 1, 1, 1023, 19681, 65533, 78121, 46651, 16801, 4089, 721, 91, 1
Offset: 1
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 3, 7, 13, 21, 31, 43, 57, 73 1, 7, 25, 61, 121, 211, 337, 505 1, 15, 79, 253, 621, 1291, 2395 1, 31, 241, 1021, 3121, 7771 1, 63, 727, 4093, 15621 1, 127, 2185, 16381 1, 255, 6559 1, 511 1
Links
- M. B. Richardson, A Needlessly Complicated and Unhelpful Solution to Ben Ames Williams' Coconuts Problem, The Winnower, 3 (2016), e147175.52128. doi: 10.15200/winn.147175.52128
Crossrefs
Programs
-
Mathematica
Table[k^# - k + 1 &[n - k + 1], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Nov 16 2016 *)
Comments