This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A193890 #56 Jul 05 2025 11:24:53 %S A193890 11,311,1301,10133,1030031 %N A193890 Primes p such that replacing any single decimal digit d with 3*d produces another prime (obviously p can contain only digits 0, 1, 2 or 3). %C A193890 These numbers do not occur in A050249 (weakly associated primes). %C A193890 p cannot contain digits 1 and 2 at the same time due to divisibility by 3. %C A193890 No more terms < 10^9. [_Reinhard Zumkeller_, Aug 11 2011] %C A193890 No more terms < 10^14. - _Arkadiusz Wesolowski_, Feb 08 2012 %C A193890 No more terms < 10^18. - _Giovanni Resta_, Feb 23 2013 %C A193890 No more terms < 10^22. - _Jan van Delden_, Mar 06 2016 %C A193890 The number of occurrences of the digit 1 or 2 is congruent to 2 (mod 3). - _Robert Israel_, Mar 07 2016 %H A193890 G. L. Honaker, Jr. and Chris Caldwell, <a href="https://t5k.org/curios/cpage/23926.html">Prime Curios! 1030031</a> %H A193890 The Prime Puzzles and Problems Connection, <a href="https://www.primepuzzles.net/puzzles/puzz_822.htm">Puzzle 822</a> %e A193890 1301 belongs to this sequence because 1303, 1301, 1901 and 3301 are all prime. %p A193890 S:= NULL: %p A193890 for x from 2 to 3^10 do %p A193890 L:= convert(x, base, 3): %p A193890 if numboccur(1,L) mod 3 <> 2 then next fi; %p A193890 L1:= subs(2=3,L); %p A193890 L2:= subs(1=2,L1); %p A193890 for LL in [L1,L2] do %p A193890 y:= add(LL[i]*10^(i-1), i=1..nops(L1)); %p A193890 if isprime(y) then %p A193890 good:= true; %p A193890 for j from 1 to nops(LL) do %p A193890 yp:= y + 2*LL[j]*10^(j-1); %p A193890 if not isprime(yp) then %p A193890 good:= false; %p A193890 break %p A193890 fi %p A193890 od: %p A193890 if good then S:= S, y fi; %p A193890 fi; %p A193890 od %p A193890 od: %p A193890 sort([S]); # _Robert Israel_, Mar 07 2016 %t A193890 Select[Select[Prime@ Range[10^6], AllTrue[IntegerDigits@ #, MemberQ[{0, 1, 2, 3}, #] &] &], Function[k, AllTrue[Map[FromDigits, Map[MapAt[3 # &, IntegerDigits@ k, #] &, Range@ IntegerLength@ k]], PrimeQ]]] (* _Michael De Vlieger_, Mar 06 2016, Version 10 *) %o A193890 (Haskell) %o A193890 import Data.List (inits, tails) %o A193890 a193890 n = a193890_list !! (n-1) %o A193890 a193890_list = filter f a107715_list where %o A193890 f n = (all ((== 1) . a010051) $ %o A193890 zipWith (\ins (t:tns) -> read $ (ins ++ x3 t ++ tns)) %o A193890 (init $ inits $ show n) (init $ tails $ show n)) %o A193890 where x3 '0' = "0" %o A193890 x3 '1' = "3" %o A193890 x3 '2' = "6" %o A193890 x3 '3' = "9" %o A193890 -- _Reinhard Zumkeller_, Aug 11 2011 %o A193890 (Python) %o A193890 from sympy import isprime %o A193890 from itertools import product %o A193890 A193890_list = [] %o A193890 for l in range(1,10): %o A193890 for d in product('0123',repeat=l): %o A193890 p = int(''.join(d)) %o A193890 if d[0] != '0' and d[-1] in ('1','3') and isprime(p): %o A193890 for i in range(len(d)): %o A193890 d2 = list(d) %o A193890 d2[i] = str(3*int(d[i])) %o A193890 if not isprime(int(''.join(d2))): %o A193890 break %o A193890 else: %o A193890 A193890_list.append(p) # _Chai Wah Wu_, Aug 13 2015 %Y A193890 Cf. A010051, A007090, A107715, A050249. %K A193890 nonn,base,hard,more %O A193890 1,1 %A A193890 _Arkadiusz Wesolowski_, Aug 08 2011